Highly effective and recyclable chiral auxiliaries: a study of the synthesis and use of three 4-isopropyl-5,5-diaryloxazolidin-2-ones

Karen Alexander (née Gillon), ${ }^{a}$ Stuart Cook, ${ }^{b}$ Colin L. Gibson ${ }^{* a}$ and Alan R. Kennedy \dagger^{a}
${ }^{a}$ Department of Pure \& Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK G1 1XL. E-mail: c.l.gibson@strath.ac.uk
${ }^{b}$ Hickson \& Welch Ltd., Wheldon Road, Castleford, West Yorks., UK WF10 2JJ

Received (in Cambridge, UK) 2nd March 2001, Accepted 16th May 2001
First published as an Advance Article on the web 8th June 2001

Abstract

A series of three 5,5-diaryl substituted oxazolidin-2-ones (diphenyl, dinaphthyl and ditolyl) have been synthesised. Studies on the benzylation of the lithium enolates of N-acyl derivatives reveal that the yields obtained were sensitive to the method of quenching the reaction. This was particularly acute for the 5,5 -diphenyl system where effective yields (69%) and high diastereoselectivities ($\mathrm{dr} 98: 2$) are only observed when the reactions were quenched into aqueous buffer. Methylation studies on the N-acyl derivatives showed that the most advantageous results ($58-69 \%$, $\mathrm{dr} \geqslant 91: 9$) were only observed using the sodium enolates. The 5,5-ditolyl-4-isopropyloxazolidin-2-one proved to be more efficacious in terms of efficiency and diastereoselectivity ($\mathrm{dr} \geqslant 97: 3$). Subsequent, simple alkaline hydrolyses of the alkylation products allowed for the high recovery and recyclability of the 5,5-diaryl substituted oxazolidin-2ones without any deleterious endocyclic cleavage. In addition, the acyl portions were recovered in high yield from the alkaline hydrolyses without any evidence of racemisation.

Introduction

Chiral auxiliary methodology continues to be an effective method in asymmetric synthesis. ${ }^{1}$ Currently, the most useful chiral auxiliaries are those which function by controlling the diastereoselectivity of attached acyl fragments. In this context, perhaps the most widely used auxiliaries are the versatile oxazolidin-2-one chiral auxiliaries $\mathbf{1}$ and 2, pioneered by Evans. The N-acyl derivatives of Evans auxiliaries $\mathbf{1}$ and 2 have been utilised in numerous highly diastereoselective reactions including alkylation, amination, azidation, bromination, hydroxylation, aldol additions, Diels-Alder cycloadditions and conjugate additions. ${ }^{2}$ The wide ranging usefulness of the Evans auxiliaries $\mathbf{1}$ and $\mathbf{2}$ coupled with the generally high diastereoselectivities has led to the development of a broad range of oxazolidin-2-one auxiliaries. Thus, oxazolidin-2-one auxiliaries have been prepared from a number of chiral sources including terpenes (e.g. 3-5), ${ }^{3}$ carbohydrates (e.g. 6-8), ${ }^{4}$ anthracenes, ${ }^{5}$ amino indanols ${ }^{6}$ and abiogenetic amino acids ${ }^{7}$ (see Fig. 1). Recently, solid phase synthesis has been applied to auxiliary chemistry with the development of a number of polymer supported oxazolidin-2-ones (e.g. 9 and 10). ${ }^{8}$ However, problems have been reported with the polymer attachment of serine based oxazolidinones in the preparation of $9 .{ }^{8 e}$

A crucial factor for the utility of a chiral auxiliary is that it must be efficiently introduced and it must be easily removed without disrupting the newly formed stereogenic centres. One of the drawbacks of the Evans methodology involves the removal of the auxiliary. If the N-acyl group is sterically demanding or α-branched then the unwanted endocyclic hydrolysis can predominate to give a ring opened amide 12 rather than the required exocyclic cleavage to afford the carboxylic acid derivative $\mathbf{1 3}$ and the recovered chiral auxiliary 1 (Scheme 1). ${ }^{9}$ The endocyclic cleavage can be circumvented by hydrolysis using lithium hydroperoxide, however, the

[^0] author.

$1 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{PhCH}_{2}$ or $\mathrm{Me}_{2} \mathrm{CH}$
$9 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-$

$2 \mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Ph}$
$10 R^{2}=\mathrm{H} ; \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-$

3

4

7

5

8

Fig. 1 Some representative examples of oxazolidin-2-one auxiliaries.

$14 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ph}, \mathrm{PhCH}_{2}$ or $\mathrm{Me}_{2} \mathrm{CH} ; \mathrm{R}^{2}=\mathrm{Me}$
$15 \mathrm{R}^{1}=\mathrm{CH}_{2}$ Ind; $\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Pr}^{\mathrm{n}}, \mathrm{nBu}^{\text {n }}$
16a $\mathrm{R}^{1}=\mathrm{Me}_{2} \mathrm{CH} ; \mathrm{R}^{2}=\mathrm{Ph}$
16b $\quad \mathrm{R}^{1}=\mathrm{Me} 2 \mathrm{CH} ; \mathrm{R}^{2}=2$-naphthyl
16c $\mathrm{R}^{1}=\mathrm{Me}_{2} \mathrm{CH} ; \mathrm{R}^{2}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
$17 \mathrm{R}^{1}=\mathrm{Me}_{2} \mathrm{CH}, \mathrm{Me}_{2} \mathrm{CHCH}_{2}, \mathrm{PhCH}_{2}, \mathrm{Ph}, \mathrm{Me}_{3} \mathrm{C} ; \mathrm{R}^{2}=\mathrm{Ph}$
Fig. 2
hazardous nature of this reagent detracts from its large scale applicability.
A solution to the problem of undesired endocyclic hydrolysis is the use of 5,5 -disubstituted oxazolidin-2-ones $\mathbf{1 4 - 1 7}$. Thus, Davies et al. introduced the 5,5-dimethyloxazolidin-2-ones 14, ${ }^{10}$ while Cardillo et al. have used the 5,5-dialkyloxazolidin-2-ones 15 in diastereoselective hydrochlorination reactions. ${ }^{11}$ However, the 5,5-dimethyloxazolidin-2-ones $\mathbf{1 4}$ suffer low yields when the enolates derived from the N-acyl derivatives are alkylated with less reactive alkyl halides. Consequently, we ${ }^{12}$ and others ${ }^{13,14}$ have investigated the 5,5-diaryloxazolidin-2-ones $\mathbf{1 6}$ and $\mathbf{1 7}$ with the aim of generating highly diastereoselective and efficient auxiliaries that do not undergo subsequent undesirable endocyclic cleavage. Subsequently, Hintermann and Seebach reported an elegant and comprehensive study of the use of N -acyl derivatives of 5,5-diphenyloxazolidin-2-one 16a in a number of diastereoselective reactions. ${ }^{15,16}$ These studies included enolate alkylation reactions of N-acyl derivatives of 5,5-diphenyloxazolidin-2-one 16a where decomposition of the enolate was observed. This decomposition led to acyl cleavage and formation of 5,5-diphenyloxazolidin-2-one 16a. ${ }^{15}$ Recently, Davies and co-workers compared the benzylation of N -acyl derivatives of 5,5 -dialkyloxazolidin-2-ones $\mathbf{1 5}$ and the 5,5-diphenyloxazolidin-2-ones 17 (see Fig. 2) and observed enolate alkylation problems with the latter. ${ }^{17}$ We now describe the preparation of 5,5-diaryl-4-isopropyloxazolidin-2-ones 16a-c including a comprehensive study on the alkylation (methylation and benzylation) and azidation of N-acyl enolates. The judicious use of appropriate work up of the benzylation reactions leads to a maximisation of alkylation yields while efficient enolate methylations were achieved using sodium enolates. These studies also indicate that the 5,5-ditolyl-1,3-oxazolidin-2one $\mathbf{1 6 c}$ is the most effective in terms of diastereoselective and efficiency. Part of this work has previously been communicated. ${ }^{12}$

Results and discussion

Synthesis of 5,5-diaryl auxiliaries

The syntheses of the 5,5-diaryl-1,3-oxazolidin-2-ones 16a-c were realised by a two step procedure involving addition of the appropriate Grignard reagents to (S)-valine methyl ester hydrochloride 18. Thus, addition of 6 equivalents of phenylmagnesium bromide to ester hydrochloride $\mathbf{1 8}$ furnished the diphenyl alcohol 19a in 54% yield. We also wished to probe the effect of the steric space about the $\mathrm{C}-5$ position in 1,3-oxa-zolidin-2-ones 16, consequently, the di(2-naphthyl)amino alcohol 19b was similarly prepared in 60% yield. However, attempts to prepare the more sterically demanding di(1-naphthyl) or di(2-tolyl)amino alcohols by a similar approach were unsuccessful. Since the preparation of diphenyl amino alcohol 19a generates three equivalents of benzene we wished to prepare a more environmentally friendly 1,3 -oxazolidin- 2 -one that would be amenable to large scale use. Thus, the di(4-tolyl) amino alcohol 19c was prepared similarly in 52% yield.

Treatment of the amino alcohols 19a-c with triphosgene under biphasic conditions in toluene and aqueous potassium hydroxide provided the 5,5-diaryl-1,3-oxazolidin-2-ones 16a (73%), 16b (59%) and 16c (54%). Alternatively, the di(4-tolyl)-1,3-oxazolidin-2-one $\mathbf{1 6 c}$ could be prepared in 62% yield using triphosgene and triethylamine in THF (Scheme 2). ${ }^{18}$

Scheme 2 Reagents and conditions: i, 6 equiv. $\mathrm{ArMgBr},-10^{\circ} \mathrm{C}$; ii, $\mathrm{Cl}_{3} \mathrm{COC}(\mathrm{O}) \mathrm{OCl}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ or $\mathrm{Et}_{3} \mathrm{~N}$, THF.

N -Acylation of the 5,5-diaryl-1,3-oxazolidin-2-ones

The N-acylation of 1,3-oxazolidin-2-ones is usually carried out by N-deprotonation with butyllithium at $-78^{\circ} \mathrm{C} .{ }^{19}$ Using this methodology the N-acyl-5,5-diaryl-1,3-oxazolidin-2-ones 20a-c and 21a-c were prepared in $46-98 \%$ yield. It should be noted that the 5,5 -diphenyl auxiliary 16a gave consistently lower N-acylation yields using this procedure (entries 1 and 6 , Table 1). This is a consequence of the fact that the 5,5 -diphenyl auxiliary $\mathbf{1 6 a}$ is poorly soluble in THF even at room temperature while the auxiliaries $\mathbf{1 6 b}$ and $\mathbf{1 6 c}$ are fully soluble at $-78^{\circ} \mathrm{C}$.
In an attempt to use conditions that were more amenable to large scale generation of N -acylated 1,3-oxazolidin-2-ones we investigated alternative procedures. ${ }^{4 e, 20}$ Thus, improved yields (84%) in the N-acylation of the 5,5 -diphenyl-1,3-oxazolidin-2one 16a were realised using the appropriate acid chloride with triethylamine and N, N-dimethylaminopyridine (entry 2, Table 1). Similarly, 20c was obtained in quantitative yield using this modified procedure (entry 5, Table 1) (Scheme 3).

Scheme 3 Reagents and conditions: i, $\mathrm{BuLi},-78^{\circ} \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$; ii, $\mathrm{Et}_{3} \mathrm{~N}, 20 \mathrm{~mol} \%$ DMAP, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{BuLi},-78^{\circ} \mathrm{C}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$; iv, $\mathrm{Et}_{3} \mathrm{~N}, 20 \mathrm{~mol} \%$ DMAP, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Diastereoselective alkylations

The efficacy of 1,3 -oxazolidin-2-one auxiliaries are generally expressed in terms of the diastereoselectivities and yields achieved in alkylation reactions of enolates derived from N-acyl-1,3-oxazolidin-2-ones. ${ }^{2-8,12,13,15-17}$ Accordingly, we initially investigated the benzylation of the enolates derived from the N-propionyl-1,3-oxazolidin-2-ones 21a-c (Scheme 4). Thus, LDA mediated enolate formation was carried out at $0^{\circ} \mathrm{C}$

Table 1 Synthesis of N-acylated 5,5-diaryl-1,3-oxazolidin-2-ones 20a-c and 21a-c

| Entry | Reactant | Ar | Method ${ }^{a, b}$ | N-Acylated 1,3-oxazolidin-2-one yield (\%) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{1 6 a}$ | Ph | A | $\mathbf{2 0 a}(46)$ |
| 2 | $\mathbf{1 6 a}$ | Ph | B | $\mathbf{2 0 a}(84)$ |
| 3 | $\mathbf{1 6 b}$ | 2-Naphthyl | A | 20b (97) |
| 4 | $\mathbf{1 6 c}$ | 4-Tolyl | A | 20c (82) |
| 5 | $\mathbf{1 6 c}$ | 4-Tolyl | B | 20c (100) |
| 6 | $\mathbf{1 6 a}$ | Ph | A | 21a (70) |
| 7 | $\mathbf{1 6 b}$ | 2-Naphthyl | A | 21b (90) |
| 8 | $\mathbf{1 6 c}$ | 4-Tolyl | A | 21c (98) |
| 9 | $\mathbf{1 6 c}$ | 4-Tolyl | B | 21c (74) |

${ }^{a}$ Method A BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, acid chloride. ${ }^{b}$ Method $\mathrm{BEt}_{3} \mathrm{~N}$, DMAP, room temperature, acid chloride.

Table 2 Enolate alkylations of N-acylated-1,3-oxazolidin-2-ones 20a-c and 21a-c

Entry	1,3-Oxazolidin-2-one	Base	Electrophile	Alkylated product (\%)	dr^{a}
1	21a	LDA	BnBr	22a (46) ${ }^{\text {b }}$	98.5:1.5
2	21a	LDA	BnBr	22a (33) ${ }^{\text {c }}$	98.5:1.5
3	21a	LDA	BnBr	22a (69) ${ }^{\text {d }}$	98:2
4	21b	LDA	BnBr	22b (55) ${ }^{\text {b }}$	95.5: 4.5
5	21b	LDA	BnBr	22b (34) ${ }^{\text {c }}$	96:2
6	21c	LDA	BnBr	22c (66) ${ }^{\text {b }}$	98:2
7	21c	LDA	BnBr	22c (31) ${ }^{\text {c }}$	96:4
8	20a	LDA	MeI	23a (48) ${ }^{\text {c }}$	96:4
9	20a	NaHMDS	MeI	23a (69) ${ }^{\text {b }}$	95.5:4.5
10	20b	LDA	MeI	23b (42) ${ }^{\text {d }}$	93:7
11	20b	NaHMDS	MeI	23b (58) ${ }^{\text {b }}$	91:9
12	20c	LDA	MeI	23c (32) ${ }^{\text {d }}$	97.5: 2.5
13	20c	NaHMDS	MeI	23c (64) ${ }^{\text {b }}$	97:3

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Reaction quenched via the addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$. ${ }^{c}$ Reaction quenched via the addition of 0.01 M phosphate buffer pH 7. ${ }^{d}$ Reaction quenched via the addition of 0.16 M phosphate buffer pH 7 .

Scheme 4 Reagents and conditions: i, LDA, $0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; ii, 3 equiv. $\mathrm{BnBr}, 0^{\circ} \mathrm{C}, 23 \mathrm{~h}$; iii, aq. $\mathrm{NH}_{4} \mathrm{Cl}$; iv, 0.01 M phosphate buffer pH 7 ; $\mathrm{v}, 0.16 \mathrm{M}$ phosphate buffer pH 7 .
followed by treatment with excess benzyl bromide. In the case of N-acyl derivative 21a, although a satisfying $98.5: 1.5$ diastereomeric ratio of 22a was achieved after quenching the reaction into aqueous ammonium chloride, the efficiency was a moderate 46% (Table 2 entry 1). Changing the conditions for quenching the reaction by the use of 0.01 M phosphate buffer led to a diminished yield of 33% (Table 2 entry 2). The use of a 0.16 M phosphate buffer at pH 7 was found to be the most efficacious method of quenching the benzylation reaction and led to a greatly improved yield of 69% (Table 2 entry 3). While the diastereomeric ratio is $98: 2$ in this case, a single recrystallisation from pentane gave diastereomerically pure 22a.

After the completion of our studies ${ }^{21}$ Hintermann and Seebach reported that low yields of benzylation were obtained from lithium enolates of N -acyl-5,5-diphenyl-1,3-oxazolidin-2ones. ${ }^{15}$ These workers attributed the low yields to the decomposition of the lithium enolate via a ketene pathway. Furthermore, Davies and co-workers attributed the low yields of 22a (35%), generated under similar conditions, to the unreactive nature of the lithium enolate of 21a. ${ }^{17}$ However, using our conditions followed by the appropriate reaction quench conditions provides benzylated 22a in 69% yield.

The work up methodology was less critical in the benzylation of the lithium enolates of 1,3-oxazolidin-2-ones 21b and 21c. In
these cases, the alkylated products were obtained in 55% (dr $95.5: 4.5$) and 66% (dr $98: 2$) yields, respectively (Table 2, entries 4 and 6), after quenching into aqueous ammonium chloride.

As a further measure of the efficacy of our auxiliaries, the alkylation of the N-dihydrocinnamoyl-5,5-diaryl-1,3-oxazol-idin-2-ones 20a-c was investigated using the less reactive methyl iodide as the electrophile (Scheme 5). Accordingly, generation

Scheme 5 Reagents and conditions: i, LDA, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, 3 equiv. MeI, $0^{\circ} \mathrm{C}, 20 \mathrm{~h}$; iii, 0.16 M phosphate buffer pH 7 ; iv, NaHMDS, $-78^{\circ} \mathrm{C}$, 1 h ; v, 5 equiv. MeI, $-78^{\circ} \mathrm{C}, 20 \mathrm{~h}$; vi, aq. $\mathrm{NH}_{4} \mathrm{Cl}$.
of the lithium enolate of N-dihydrocinnamoyl-5,5-diaryl-1,3-oxazolidin-2-ones 20 a followed by methylation at $0^{\circ} \mathrm{C}$ gave a poor yield (48%) of the alkylated product 23a (Table 2 entry 8). The use of our modified reaction quench procedure of 0.16 M phosphate buffer at pH 7 also gave a poor yield of methylated products 23b and 23c (Table 2 entries 10 and 12). Evans et al. have documented that the methylation of sodium enolates of N-acyl-1,3-oxazolidin-2-ones resulted in superior yields over the corresponding lithium enolates. Thus, formation of the sodium enolates of the N-dihydrocinnamoyl-5,5-diaryl-1,3-oxazolidin-2-ones $20 \mathbf{a}-\mathbf{c}$ and methylation at $-78^{\circ} \mathrm{C}$ with excess methyl iodide provided the alkylated products N-dihydro-cinnamoyl-5,5-diaryl-1,3-oxazolidin-2-ones 23a-c in improved yields (58-69\%) (Table 2, entries 9, 11 and 13). Although the yields are significantly better in the methylations using sodium

Fig. 3 Chem3D Pro representation of the X-ray structure of 22a.
enolates relative to the lithium counterparts, there is little difference in the diastereoselectivities observed (Table 2, entries 8-13).

The 5,5-ditolyl-1,3-oxazolidin-2-one derivatives 20c and 21c proved to be the most efficacious in these alkylation studies giving diastereomeric ratios of $\geqslant 97: 3$ and yields $\geqslant 64 \%$. These results compare well with other 5,5 -disubstituted 1,3 -oxazol-idin-2-one auxiliaries. ${ }^{10,13-17}$ Although enolate alkylations of the 5,5-diphenyl-1,3-oxazolidin-2-one derivatives 20a and 21a were less diastereoselective ($\mathrm{dr} \geqslant 93: 7$), the advantages are the highly crystalline nature of all the 5,5 -diphenyl-1,3-oxazolidin2 -one derivatives 16a, 20a-23a. This feature has already been outlined by Seebach et al. ${ }^{15}$ and allows easier purification and separation of the diastereomers. However, the production of benzene as a by-product in the preparation of amino alcohol 19a may have adverse environmental implications.

The foregoing benzylated products 22a-c and methylated compounds 23a-c represent complementary diastereomers which allowed the rapid establishment of the diastereomeric ratios. These ratios were determined by ${ }^{1} \mathrm{H}$ NMR by measurement and comparison of the peak areas on expanded spectra corresponding to the benzyl protons of each complementary diastereomer present. Alternatively or additionally, the peak areas of the three methyl resonances were measured and the proportions established of the major and minor diastereomers.

X-Ray crystallographic studies

In order to establish the absolute configuration at the newly formed stereocentre at C-2' (C(17) X-ray numbering) in the alkylation reactions a single crystal X-ray analysis was carried out on the recrystallised 22a (dr $>99.5: 0.5$) (Fig. 3) \ddagger The diffraction data, by themselves, give no reliable information of the absolute structure, this was based on the known (S) configuration at $\mathrm{C}(3)$. This established the configuration at $\mathrm{C}(17)$ as (R) and is consistent with the $l k$ delivery of the electrophile to the 2 Si face of a carbonyl-metal-carbonyl Z-enolate of 21a, in accord with the results of Evans et al. and Davies and Sanganee. ${ }^{22,10 a}$

In line with the published crystal structure of 20a, ${ }^{15}$ the two methyl groups of the $\mathrm{C}(3)$ isopropyl group in 22a are directed
away from the $\mathrm{C}(2)$ phenyl groups. Their position lies over the 1,3-oxazolidin- 2 -one ring such that they effectively shield the Re face of the $\mathrm{C}(16)$ amide carbonyl so that the isopropyl group acts as a pseudo tert-butyl group. ${ }^{10 e, 15}$

The X-ray structure indicates that the two $\mathrm{C}(2)$ phenyl groups on the 1,3-oxazolidin-2-one ring in 22a are not directed over the heterocyclic ring. Indeed, in 22a the pro-S phenyl group is approximately co-linear with the $\mathrm{C}(2)-\mathrm{C}(3)$ bond, with $\mathrm{C} 3-\mathrm{C} 2-$ $\mathrm{C} 10-\mathrm{C} 15$ and $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 10-\mathrm{C} 11$ torsional angles of $-3.2(6)^{\circ}$ and $-179.6(3)^{\circ}$, respectively. The pro- R phenyl group in 22a is approximately co-linear with the $\mathrm{C}(2)-\mathrm{O}(1)$ bond with $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 9$ and $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$ torsional angles of $-1.1(5)^{\circ}$ and $178.9(3)^{\circ}$, respectively. The arrangements of these phenyl groups ensure that there is no deleterious shielding of the $\mathrm{C}(1)$ Re face. This is in contrast to the molecular modelling studies of Davies and co-workers on the enolate of a (4S)-N-acyl-4,5,5-triphenyl-1,3-oxazolidin-2-one. ${ }^{17}$ In these modelling studies, a C-5 pro-R phenyl ring was orientated over the 1,3-oxazolidin-2-one ring, resulting in steric hindrance of both faces of the heterocyclic ring. The decrease in diastereoselectivity using the ($4 S$)- N-acyl-4,5,5-triphenyl-1,3-oxazolidin-2-one over the 5,5 -dimethyl analogue was attributed to the facial steric hindrance of the $\mathrm{C}-5$ pro- R phenyl ring in the former.

Diastereoselective azidation reactions

As a further test of the utility of 5,5-diaryl-1,3-oxazolidin-2ones 16a-c as chiral auxiliaries we decided to investigate the use of these systems in diastereoselective azidation processes. Evans et al. have reported a comprehensive study on the use of the Evans' phenylalaninol 1,3-oxazolidin-2-one auxiliaries 1 in two complementary approaches to the synthesis of 2 -azidocarboxylic acids (dr $97: 3$ and $91: 9$). ${ }^{23}$ Accordingly, we investigated these azidation protocols using our most efficacious 5,5-ditolyl auxiliary in the form of the N-dihydrocinnamoyl derivative 20c. Treatment of N-dihydrocinnamoyl derivative 20c with potassium hexamethyldisilylamide at $-78^{\circ} \mathrm{C}$ followed by the addition of a pre-cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $2,4,6-$ triisopropylsulfonyl azide. ${ }^{24}$ The reaction was allowed to age for just two minutes before quenching with glacial acetic acid which afforded the azide 1,3-oxazolidin-2-one 24 in 65% yield and a diastereomeric ratio of $96: 4$. Alternatively, preparation of the boron enolate of N -dihydrocinnamoyl derivative 20c followed by treatment with N-bromosuccinimide provided the crude bromo-1,3-oxazolidin-2-one 25 . The crude bromo-1,3-oxazolidin-2-one 25 was reacted with tetramethylguanidinium azide ${ }^{25}$ to afford the 1,3-oxazolidin-2-one azide $\mathbf{2 6}$ in 55% yield and a diastereomeric ratio of $95.5: 4.5$.

With the complementary diastereomers 24 and 26, in hand, it was possible to determine the respective diastereoselectivities by normal phase HPLC analysis (Scheme 6).

Hydrolysis and recovery of the chiral auxiliaries

Following diastereoselective reactions, chiral auxiliaries must be efficiently cleaved from the acyl portion in order to isolate the newly formed chiral product and recover the parent 1,3 -oxazolidin-2-one. In the light of the reported problems in

[^1]Table 3 Hydrolysis of N-acylated 5,5-diaryl-1,3-oxazolidin-2-ones 22a-c and 23a-c

Entry	1,3-Oxazolidin-2-one (dr)	Recovered oxazolidin-2-one (\%)	Acid (\%)	\%ee Acid ${ }^{\text {a }}$
1	22a (>99: 1)	16a (94)	27 (60)	$98^{\text {b }}$
2	22b (95.5 : 4.5)	16b (91)	27 (71)	92
3	22c (98:2)	16c (98)	27 (55)	96
4	23a (96:4)	16a (95)	28 (94)	$89^{\text {b }}$
5	23b (91: 9)	16b (100)	28 (72)	81
6	23c (97:3)	16c (100)	28 (62)	$92^{\text {b }}$

${ }^{a}$ Determined by comparison of the $[a]_{\mathrm{D}}$ with the literature values. ${ }^{27}{ }^{b}$ The $[a]_{\mathrm{D}}$ was measured at a significantly lower concentration than the literature value.

Scheme 6 Reagents and conditions: i, KHMDS, $-78{ }^{\circ} \mathrm{C}$; ii, 2,4,6triisopropylsulfonyl azide, $-78^{\circ} \mathrm{C}$; iii, $\mathrm{AcOH}-78-30^{\circ} \mathrm{C}$; iv, $\mathrm{Bu}_{2} \mathrm{BOTf}$, ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt},-78^{\circ} \mathrm{C} ; \mathrm{v}, N$-bromosuccinimide; vi, tetramethylguanidinium azide, $0^{\circ} \mathrm{C}$.

1,3-oxazolidin-2-one removal (vide supra) ${ }^{9}$ it was important to confirm that the presence of aromatic groups at C-5 allowed for the mild non-destructive cleavage. By suppressing the unwanted endocyclic cleavage this should lead to efficient recovery of the auxiliary and acyl portion. The archetypal test of 1,3-oxazolidin- 2 -one recyclability has been the hydrolysis of alkylated acyl auxiliaries. ${ }^{9,10 a, 15,17}$ Accordingly, alkaline hydrolysis of the benzylated products $\mathbf{2 2 a} \mathbf{a}$ c with lithium hydroxide in aqueous THF afforded the (R)-2-methyl-3-phenylpropionic acid 27 in $55-71 \%$ yield together with the recovered auxiliaries 16a (94%), 16b (91%), and 16c (98%), respectively. No products resulting from the undesired endocyclic cleavage pathway were observed and this was further evidenced by the exceptionally high recovery of the auxiliaries 16a-c (Scheme 7, Table 3 entries $1-3)$.

Scheme 7 Reagents and conditions: i, 2 equiv. $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$.
Similar lithium hydroxide hydrolysis of the methylated products 23a-c afforded (S)-2-methyl-3-phenylpropionic acid 28 in $62-94 \%$ yield as well as the recovered auxiliaries 16a (95%), 16b (100%), and $\mathbf{1 6 c}(100 \%)$, respectively (Scheme 8, Table 3 entries 3-6).

Initial attempts to determine the ees of (R)-2-methyl-3phenylpropionic acid 27 and the (S) enantiomer 28 by ${ }^{1} \mathrm{H}$ NMR in conjunction with the chiral solvating agent (R, R) diphenyldiaminoethane ${ }^{10 a, 26}$ were unsuccessful because of insufficient differences in the chemical shifts of the comple-

Scheme 8 Reagents and conditions: i, 2 equiv. $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$.
mentary diastereomeric complexes. Consequently, the absolute configuration and the ees of (R)-2-methyl-3-phenylpropionic acid 27 and (S)-2-methyl-3-phenylpropionic acid 28 were established by comparison of the measured specific rotation with the published value. ${ }^{27}$ Within the constraints of using specific rotations to determine the ees, there was no evidence of substantial loss of stereochemical integrity at C-2 in (R)-2-methyl-3-phenylpropionic acid 27 or (S)-2-methyl-3-phenylpropionic acid 28, with respect to the original diastereomeric ratios (Table 3).

Conclusions

Studies of the benzylation of three N-propionyl-5,5-diaryl substituted 1,3-oxazolidin-2-ones 21a-c revealed that expedient use of the appropriate reaction quench (pH 7 buffer for 21a, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ for 21b,c) leads to maximal yields ($55-68 \%$) as well as high stereoinduction (dr $95.5: 4.5-98: 2$). Similar investigations on the methylation of three N-dihydrocinnamoyl-5,5diaryl substituted 1,3-oxazolidin-2-ones 20a-c disclosed that the use of sodium enolates led to the most efficacious reactions (58-69\%).
The presence of the 5,5 -diaryl groups completely suppressed any unwanted endocyclic cleavage in subsequent simple alkaline hydrolyses. This allowed for the high recovery and recyclability of the 5,5-diaryl substituted 1,3-oxazolidin-2-ones 16a-c. In addition, the acyl portion was recovered in high yield without any evidence of racemisation.
In general, the 5,5 -ditolyl-1,3-oxazolidin-2-ones 16c gave the best levels of stereoinduction ($\mathrm{dr} \geqslant 97: 3$) in the alkylation of the appropriate N-acyl derivatives. While lower levels of stereoinduction ($\mathrm{dr} \geqslant 93: 7$) were realised in similar studies with the 5,5-diphenyl-1,3-oxazolidin-2-ones 16a, the highly crystalline nature of the derivatives provides a rapid method of purification and enhancement of diastereomeric purity (100%) through recrystallisation. However, the synthesis of 5,5-diphenyl-1,3-oxazolidin-2-ones 16a is deleterious in environmental terms as a result of the production of benzene as a by-product.

Experimental

Instrumentation

Melting points were determined on a Reichert 7905 hot stage and are uncorrected. Specific rotations were measured at $20^{\circ} \mathrm{C}$ in a $1 \mathrm{~cm}^{3}$ cell with a pathlength of 10 cm using a Perkin-Elmer

341 polarimeter. The $[a]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ and the concentrations are given in $\mathrm{g} 100 \mathrm{~cm}^{-3} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker WM-250, JEOL 270, or Bruker 400 spectrometers in the indicated solvents operating at 250 , 270 or 400 MHz , respectively. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on the same instruments operating at $62.89,67.80$, and 100 MHz , respectively. The following abbreviations were used: s , singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; dq, doublet of quartets; sep, septet. Coupling constants were recorded in Hz . Infrared (IR) spectra were recorded on a Nicolet Impact 400D FTIR spectrometer either as liquid films or as KBr discs. Mass spectra were recorded on a JEOL JMS AX505 spectrometer at Strathclyde or at the EPSRC National Mass Spectrometry service, Swansea. Microanalyses were performed by the microanalytical service at Strathclyde. HPLC analysis was performed using an Applied Chromatography Systems (ACS) Model 351 isocratic pump in conjunction with a Zorbax $5 \mu \mathrm{~m}$ silica column ($250 \times 4.6 \mathrm{~mm}$) with 1% tert-butyl methyl ether in isooctane $\left(1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$ as the eluant. The peaks were detected with an ACS Model 750/12 UV detector set at 254 nm and an ACS Chiramonitor. The data were collected on a Viglen computer fitted with a SUMMIT data card and the chromatograms were integrated using COMUS SUMMIT software.

General methods

Anhydrous reactions were carried out under an atmosphere of nitrogen in oven-dried glassware ($140^{\circ} \mathrm{C}$). Anhydrous solvents were obtained using standard procedures: glacial acetic acid ($\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CrO}_{3}$), dichloroethane (NaH), diisopropylamine $\left(\mathrm{CaH}_{2}\right)$, diisopropylethylamine $\left(\mathrm{CaH}_{2}\right)$, methanol $\left(\mathrm{Mg}(\mathrm{OMe})_{2}\right)$, THF (K metal), toluene (Na metal) and triethylamine $\left(\mathrm{CaH}_{2}\right)$. Benzyl bromide (79-81 ${ }^{\circ} \mathrm{C}$ @ 14 mmHg), dihydrocinnamoyl chloride (111-112 ${ }^{\circ} \mathrm{C} @ 18 \mathrm{mmHg}$), methyl iodide ($43-44^{\circ} \mathrm{C}$), propionyl chloride ($77-79^{\circ} \mathrm{C}$) and thionyl chloride ($77-79^{\circ} \mathrm{C}$) were all fractionally distilled before use. All other reagents were used as supplied. The 0.01 phosphate buffer was prepared by dissolving the appropriate buffer tablet in water $\left(200 \mathrm{~cm}^{3}\right)(0.01$ M phosphate buffer, $2.7 \mathrm{mM} \mathrm{KCl}, 0.137 \mathrm{M} \mathrm{NaCl})$. The 0.16 M phosphate buffer solution (pH 7.0) was prepared using $82 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $37 \mathrm{~cm}^{3}$ of 0.1 M citric acid. Flash column chromatography was performed according to the procedure of Still et al. ${ }^{28}$ using silica gel ($230-400$ mesh).

Measurement of alkylation diastereomeric ratios

The diastereomeric ratios of 22a-c and 23a-c were measured using ${ }^{1} \mathrm{H}$ NMR analysis. This was achieved by comparison of the peak areas on expanded sections of the spectra for the benzyl methylene resonances for each complementary diastereomer present in the reaction mixture and/or the three methyl resonances of both diastereomers.

(S)-Valine methyl ester hydrochloride 18

To a suspension of L-valine ($30 \mathrm{~g}, 256 \mathrm{mmol}$) in dry MeOH (250 cm^{3}) at $-10^{\circ} \mathrm{C}$ under N_{2} was added thionyl chloride ($23.25 \mathrm{~cm}^{3}$, 320 mmol) portionwise over 10 min . The heterogeneous mixture was warmed to room temperature and heated at reflux for 2 h . The reaction mixture was allowed to cool to room temperature to afford a white crystalline solid ($33.763 \mathrm{~g}, 202 \mathrm{mmol}$, 79%) (MeOH-diethyl ether), mp 168-169 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{29}{ }^{165-170}{ }^{\circ} \mathrm{C}$) (Found: C, 42.68; H, 8.86; N, 8.36. Calculated for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}$: C, $42.99 ; \mathrm{H}, 8.42 ; \mathrm{N}, 8.36 \%) ;[a]_{\mathrm{D}}+24.1(c=1.98, \mathrm{MeOH})$ (lit., $\left.{ }^{29}=+23 \pm 1(c=2, \mathrm{MeOH})\right) ; v_{\text {max }}(\mathrm{KBr}) 1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}$ str) $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.76\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N} H_{3}\right), 3.96(\mathrm{~d}, 1 \mathrm{H}, J 3.1$, $-\mathrm{NCH}), 3.77\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.15$ $\left(\mathrm{d}, 3 \mathrm{H}, J 3.0,-\mathrm{C} H_{3}\right), 1.12\left(\mathrm{~d}, 3 \mathrm{H}, J 3.0,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $169.02\left(\mathrm{CO}_{2} \mathrm{H}\right), \quad 58.78\left(-\mathrm{OCH}_{3}\right), \quad 52.96(-\mathrm{NCH}), \quad 29.96$ $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.57,18.34\left(-\mathrm{CH}_{3}\right)$.

General procedure for the synthesis of the diaryl amino alcohols

(S)-Valine methyl ester hydrochloride $\mathbf{1 8}$ ($c a .60 \mathrm{mmol}$) was added portionwise over 20 min to a 2 M solution of the appropriate Grignard reagent [prepared from aryl bromide (8 equiv.) in THF ($240 \mathrm{~cm}^{3}$) and magnesium turnings (8.8 equiv.)] cooled in an ice-salt bath under a N_{2} atmosphere. The reaction mixture was stirred for 4 h at room temperature before being quenched into a mixture of 2 M aqueous HCl and crushed ice. The mixture was basified by the addition of aqueous ammonia. The organic layer was separated and the aqueous layer was washed with EtOAc ($\times 3$). The organic extracts were combined, dried over MgSO_{4} and the solvent removed in vacuo to yield the crude amino alcohol which was recrystallised.
(\boldsymbol{S})-2-Amino-1,1-diphenyl-3-methylbutan-1-ol 19a. The required amino alcohol was obtained from (S)-valine methyl ester hydrochloride $\mathbf{1 8}(10.079 \mathrm{~g}, 59.99 \mathrm{mmol})$ as a white solid, ($8.241 \mathrm{~g}, 32.23 \mathrm{mmol}, 54 \%$) (EtOH), mp $93-96{ }^{\circ} \mathrm{C}$ (lit. ${ }^{30} 94-$ $95^{\circ} \mathrm{C}$) (Found: C, 79.77; H, 8.15; N, 5.70: MH^{+}256.1704. Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 79.96 ; \mathrm{H}, 8.29 ; \mathrm{N}, 5.49 \%$: 256.1701); $[a]_{\mathrm{D}}-130.2 \quad\left(c=1.10, \quad \mathrm{CHCl}_{3}\right) \quad$ (lit. ${ }^{30}-127.7 \quad(c=0.639$, $\left.\mathrm{CHCl}_{3}\right)$); $v_{\text {max }}(\mathrm{KBr}) 3380(\mathrm{br}, \mathrm{O}-\mathrm{H}), 3338(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 3278(\mathrm{~m}$, $\mathrm{N}-\mathrm{H}$), 3082, 3057, 3019 (m, aromatic C-H), 1658, 1592 (m, $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.63-7.11(\mathrm{~m}, 10 \mathrm{H}$, aryl- H), 3.83 (d , $\left.1 \mathrm{H}, J 2.2,-\mathrm{CHNH}_{2}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.91(\mathrm{~d}, 3 \mathrm{H}$, $\left.J 7.0,-\mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 148.16$, 145.05, 128.57, 128.20, 127.00, 126.43, 126.07, 125.85 (aryl-C), $79.85(C-\beta), 60.33(C-\alpha), 28.00\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 23.15\left(-\mathrm{CH}_{3}\right)$, $16.28\left(-\mathrm{CH}_{3}\right)$.
(S)-2-Amino-1,1-di(2'-naphthyl)-3-methylbutan-1-ol 19b. The amino alcohol was obtained from (S)-valine methyl ester hydrochloride $\mathbf{1 8}(7.022 \mathrm{~g}, 41.80 \mathrm{mmol})$ as a white solid (8.653 g, $24.37 \mathrm{mmol}, 60 \%$) ($\mathrm{Pr}^{\mathrm{i} O H}$), mp 196-198 ${ }^{\circ} \mathrm{C}$ (Found: C, 84.56; $\mathrm{H}, 6.99$; N, 3.89: $\mathrm{MH}^{+} 356.2060 . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}$ requires: $\mathrm{C}, 84.47$; $\mathrm{H}, 7.09 ; \mathrm{N}, 3.94 \%: 356.2014) ;[a]_{\mathrm{D}}-372.2\left(c=0.70, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}) 3443(\mathrm{br}, \mathrm{O}-\mathrm{H}), 3411(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 3334(\mathrm{~m}, \mathrm{~N}-\mathrm{H})$, 3064, $3040(\mathrm{~m}$, aromatic $\mathrm{C}-\mathrm{H}), 1626,1597(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 8.21-7.43(\mathrm{~m}, 14 \mathrm{H}$, aryl $-H), 4.19(\mathrm{~d}, 1 \mathrm{H}, J 2.2$, $\left.-\mathrm{C} H \mathrm{NH}_{2}\right), 1.81\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 1.00(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 7.0$, $\left.-\mathrm{CH}_{3}\right), 0.96\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 146.09,142.98$, $133.90,132.85,132.71,128.75,128.68,128.07,127.93,126.65$, 126.51, 126.44, 126.22, 125.97, 124.82, 124.49, 124.22 (aryl-C), $80.48(C-\beta), 60.03(C-\alpha), 28.75\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.17,16.37$ $\left(-\mathrm{CH}_{3}\right)$.
(S)-2-Amino-1,1-di(4'-tolyl)-3-methylbutanol 19c. The desired amino alcohol was obtained from (S)-valine methyl ester hydrochloride $18(6.995 \mathrm{~g}, 41.64 \mathrm{mmol})$ as colourless needles ($6.132 \mathrm{~g}, 21.67 \mathrm{mmol}, 52 \%$) (EtOH-H2O), mp $96-98{ }^{\circ} \mathrm{C}$ (Found: C, 80.40; H, 8.87; N, 5.00: $\mathrm{MH}^{+} 284.2041 . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}$ requires: C, $80.52 ; \mathrm{H}, 8.89 ; \mathrm{N}, 4.94 \%$: 284.2014); $[a]_{\mathrm{D}}-108.4$ $\left(c=0.66, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 3513(\mathrm{br}, \mathrm{O}-\mathrm{H}), 3390(\mathrm{~m}, \mathrm{~N}-\mathrm{H})$, 3323 (m, N-H), 3092, 3057, 3022 (m, aromatic C-H), 1603, $1508(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.49-7.06(\mathrm{~m}, 8 \mathrm{H}$, aryl- H), 3.78 (d, 1H, J 2.4, -NCH), 2.27 (s, 6H, -PhCH $)_{3}$), 1.76 (m, 1H, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right), 0.88(\mathrm{~d}, 3 \mathrm{H}, J 7.0$, $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 145.32,142.35,136.27,135.87,129.30$, 128.93, 125.92, 125.46 (aryl- C), 79.75 ($C-\beta$), 60.38 ($C-\alpha), 28.01$ $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.19\left(-\mathrm{CH}_{3}\right)$, $21.18\left(\mathrm{PhCH}_{3}\right), 16.31\left(-\mathrm{CH}_{3}\right)$.

General procedures for the preparation of the 1,3-oxazolidin-2ones

Method A. Using aqueous potassium hydroxide. To a vigorously stirred suspension of the amino alcohol (1 equiv.) in 12.5% aqueous potassium hydroxide (6.2-6.4 equiv.) and toluene $(1.4 \mathrm{M})$ at room temperature under N_{2} was added a 1.7 M solution of triphosgene in toluene (3.6 equiv.) dropwise over 20 min . The resultant slurry was aged for 2 h and the white solid
formed was filtered off and washed several times with water and toluene. Recrystallisation gave the appropriate 1,3 -oxazolidin-2-ones 16a-c.

Method B. Using triethylamine. To a suspension of the amino alcohol (1 equiv.) in THF (0.2 M) cooled in an ice bath under N_{2} was added triethylamine (2.2 equiv.) in one portion. A 0.35 M solution of triphosgene in THF (1.16 equiv.) was added rapidly. The ice bath was removed and the slurry was aged for 45 min at room temperature. The resultant white solid was filtered and washed with THF and EtOAc. The filtrate was dried over MgSO_{4} and the solvent removed in vacuo to give a white solid. Column chromatography (EtOAc-hexane, 1:1) and recrystallisation gave the desired compound.
(S)-5,5-Diphenyl-4-isopropyl-1,3-oxazolidin-2-one 16a Using method A with (S)-2-amino-1,1-diphenyl-3-methyl-butan-1-ol 19a ($3.945 \mathrm{~g}, 15.47 \mathrm{mmol}$) afforded the title compound as white needle-like crystals ($3.176 \mathrm{~g}, 11.3 \mathrm{mmol}, 73 \%$) (EtOH-H2O), mp 247-250 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{13} 253.2-253.9^{\circ} \mathrm{C}$) (Found: C, $76.73 ; \mathrm{H}, 6.85 ; \mathrm{N}, 4.87: \mathrm{MH}^{+}$282.1400. Calculated for $\left.\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 76.84 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.98 \%: 282.1494\right) ;[a]_{\mathrm{D}}-263.4$ $\left(c=0.51, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. $\left.{ }^{13}[a]_{\mathrm{D}}-253.1\left(c=0.1, \mathrm{CHCl}_{3}\right)\right) ; v_{\text {max }}$ (KBr) $3292(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 1764,1745(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{d}_{6}-\mathrm{DMSO}\right)$ $8.13(\mathrm{~s}, 1 \mathrm{H},-\mathrm{N} H), 7.68-7.21(\mathrm{~m}, 6 \mathrm{H}$, aryl- H), $4.38(\mathrm{~s}, 1 \mathrm{H}$ $\mathrm{HN}-H), 1.83\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 6.8,-\mathrm{CH}_{3}\right)$, 0.52 (d, 3H, J 6.8, - CH_{3}); $\delta_{\mathrm{C}}\left(\mathrm{d}_{6}\right.$-DMSO) 157.33 ($\mathrm{C}=\mathrm{O}$), 145.36, 139.80, 128.37, 128.06, 127.68, 127.19, 125.51, 125.09 (aryl-C), $87.65(C-\beta), 64.19(C-\alpha), 29.06\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.60,14.50$ $\left(-\mathrm{CH}_{3}\right)$.
(S)-5,5-Di(2'-naphthyl)-4-isopropyl-1,3-oxazolidin-2-one

16b. Using method A with (S)-2-amino-1,1-di(2'-naphthyl)-3-methylbutan-1-ol 19b ($2.483 \mathrm{~g}, 6.99 \mathrm{mmol}$) gave the title compound as white needles ($1.581 \mathrm{~g}, 4.15 \mathrm{mmol}, 59 \%$) (toluene), mp 240-242 ${ }^{\circ} \mathrm{C}$ (Found: C, 81.65; H, 5.78; N, 3.37: $\mathrm{MH}^{+} 382.1818$. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires: C, $81.86 ; \mathrm{H}, 6.08$; $\mathrm{N}, 3.67 \%$: 382.1807); $[a]_{\mathrm{D}}-373.6\left(c=0.06, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 3285(\mathrm{br}, \mathrm{N}-\mathrm{H}), 1754$, $1706(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.09-7.16(\mathrm{~m}, 14 \mathrm{H}$, aryl- H), 6.62 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CHNH}$), 4.63 (d, 1H, J 2.9, HNCH), 1.93 (m, $\left.1 \mathrm{H},-\mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.75(\mathrm{~d}, 3 \mathrm{H}, J 6.8$, $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 158.97(\mathrm{C}=\mathrm{O}), 136.59,133.17,132.98$, 132.97, 132.75, 128.80, 128.69, 128.63, 128.02, 127.75, 127.71, 126.86, 126.77, 126.77, 126.73, 126.69, 125.52, 124.80, 124.59, 124.52, 124.40 (aryl- C), 89.99 ($C-\beta$), $65.43(C-\alpha), 29.96$ $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.25,15.90\left(-\mathrm{CH}_{3}\right)$.
(S)-5,5-Di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one $16 c$. Using method A with (S)-2-amino-1,1-di(4'-tolyl)-3-methylbutanol 19c ($2.000 \mathrm{~g}, 7.07 \mathrm{mmol}$) gave the title compound as colourless needles ($1.182 \mathrm{~g}, 3.83 \mathrm{mmol}, 54 \%$) (EtOH), mp 186 $188^{\circ} \mathrm{C}$ (Found: C, 77.45 ; H, 7.53; N, 4.55: $\mathrm{MH}^{+} 310.1829$. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires: C, $77.64 ; \mathrm{H}, 7.48 ; \mathrm{N}, 4.53 \%: 310.1807$); $[a]_{\mathrm{D}}-235.7\left(c=1.03, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 3264(\mathrm{br}, \mathrm{N}-\mathrm{H}), 1749$, $1717(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.44-7.09(\mathrm{~m}, 8 \mathrm{H}$, aryl- H$), 6.52$ ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CHNH}), 4.32(\mathrm{~d}, 1 \mathrm{H}, J 3.2,-\mathrm{C} H \mathrm{NH}), 2.32(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{PhCH}_{3}\right), 1.83\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right)$, $0.71\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.00(\mathrm{C}=\mathrm{O}), 141.40$, 138.09, 137.50, 136.67, 129.33, 128.89, 126.47, 125.83 (aryl-C), $89.64(C-\beta), 66.06(C-\alpha), 29.81\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.23,21.06$ $\left(\mathrm{PhCH}_{3}\right), 15.97\left(-\mathrm{CH}_{3}\right)$.

Using method B with (S)-2-amino-1,1-di(4'-tolyl)-3-methylbutanol 19c ($0.255 \mathrm{~g}, 0.90 \mathrm{mmol}$) the title compound was obtained as fine, white needle-like crystals ($0.171 \mathrm{~g}, 0.56 \mathrm{mmol}$, $62 \%)\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ with identical spectroscopic data to those reported above.

General procedures for the acylation of the 1,3-oxazolidin-2-ones

Method C. Using \boldsymbol{n}-butyllithium. To a solution or suspension of the 1,3-oxazolidin-2-one (1 equiv.) in THF ($0.07-0.1 \mathrm{M}$) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} was added n-butyllithium (1.6 M in hexane, 1.04 equiv.) portionwise over 10 min and the mixture was
stirred for 2 h at this temperature. Freshly distilled acid chloride (1.1 equiv.) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min and at room temperature for a further 24 h . The reaction mixture was poured into phosphate buffer $(0.01 \mathrm{M})$ and the organic phase was separated. The aqueous layer was washed with $\operatorname{DCM}(\times 2)$ and the organic extracts were combined and washed with aqueous saturated NaHCO_{3} and brine. The organic phase was dried over MgSO_{4} and the solvent removed in vacuo. Flash column chromatography afforded the appropriate acylated 1,3-oxazolidin-2-ones.

Method D. Using triethylamine. To a solution or suspension of the 1,3 -oxazolidin-2-one (1 equiv.) in DCM ($0.1-0.16 \mathrm{M}$) at room temperature under N_{2} was added DMAP (0.2 equiv.) and triethylamine (1.2 equiv.). Freshly distilled acid chloride (1.3 equiv.) was added dropwise over 5 min and the mixture was stirred for 5 h at room temperature. The reaction mixture was quenched into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic phase was separated. The aqueous layer was washed with DCM ($\times 3$) and the organic extracts were combined, washed with aqueous saturated NaHCO_{3} and brine, dried over MgSO_{4} and the solvent removed in vacuo. Purification via flash column chromatography afforded the requisite acylated 1,3 -oxazolidin- 2 -ones.
(S)-5,5-Diphenyl-4-isopropyl-3-(1^{\prime}-oxopropyl)-1,3-oxazol-idin-2-one 21a. Using method C with (S)-5,5-diphenyl-4-isopropyl-1,3-oxazolidin-2-one $16 \mathrm{a}(0.563 \mathrm{~g}, 2.00 \mathrm{mmol})$ and propionyl chloride $\left(0.2 \mathrm{~cm}^{3}, 2.3 \mathrm{mmol}\right)$ followed by flash column chromatography eluting with DCM-hexane (6:4) furnished the title compound 21a as a white solid $(0.471 \mathrm{~g}$, $1.4 \mathrm{mmol}, 70 \%$), mp $110-113{ }^{\circ} \mathrm{C}$ (lit. ${ }^{15} 111-112^{\circ} \mathrm{C}$) (Found: C, $74.83 ; \mathrm{H}, 7.06 ; \mathrm{N}, 4.04 ; \mathrm{MH}^{+}$338.1749. Calculated for $\left.\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 74.75 ; \mathrm{H}, 6.87 ; \mathrm{N}, 4.15 \%: 338.1756.\right) ;[a]_{\mathrm{D}}$ $-258.3\left(c=1.04, \mathrm{CHCl}_{3}\right)\left(\operatorname{lit}{ }^{15}[a]_{\mathrm{D}}-239.7\left(c=0.74, \mathrm{CHCl}_{3}\right)\right)$; $v_{\text {max }}(\mathrm{KBr}) 1772(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1708(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.49-$ $7.25(\mathrm{~m}, 10 \mathrm{H}$, aryl- H), $5.38(\mathrm{~d}, 1 \mathrm{H}, J 3.5,-\mathrm{NCH}), 2.93(\mathrm{dq}, 1 \mathrm{H}$, $J 17.3$ and $\left.7.3,-\mathrm{CH}_{\mathrm{A}} \mathrm{HCH}_{3}\right), 2.73(\mathrm{dq}, 1 \mathrm{H}, J 17.3$ and 7.3 , $\left.-\mathrm{CH} H_{\mathrm{B}} \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.09(\mathrm{t}, 3 \mathrm{H}, J 7.3$, $\left.-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right), 0.76(\mathrm{~d}, 3 \mathrm{H}, J 6.5$, $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 174.19\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 153.28(\mathrm{C}=\mathrm{O})$, $142.57,138.43,129.09,128.77,128.57,128.13,126.14,125.83$ (aryl- C), $89.56(C-\beta), 64.60(C-\alpha), 30.11\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.10$ $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.00,16.57\left(-\mathrm{CH}_{3}\right), 8.85\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
(S)-5,5-Di(2'-naphthyl)-4-isopropyl-3-($1^{\prime \prime}$-oxopropyl)-1,3-oxazolidin-2-one 21b. Using method C with (S)-5,5-di(2'-naphthyl)-4-isopropyl-1,3-oxazolidin-2-one 16b ($0.258 \mathrm{~g}, 0.69$ $\mathrm{mmol})$ and propionyl chloride ($0.07 \mathrm{~cm}^{3}, 0.81 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(9: 1)$ as the eluant furnished the desired product as a white crystalline solid ($0.265 \mathrm{~g}, 0.62 \mathrm{mmol}, 90 \%$), mp $145-147^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C, 79.90; H, 6.13; N, 3.19: $\mathrm{MH}^{+} 438.2109 . \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires: C, 79.61; H, 6.22; N, 3.21\%: 438.2069); [a] $]_{\mathrm{D}}-385.2$ $\left(c=1.02, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 1770(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1713(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.80-6.94(\mathrm{~m}, 14 \mathrm{H}$, aryl- H), $5.31(\mathrm{~d}, 1 \mathrm{H}$, $J 3.0,-\mathrm{NCH}), 2.55\left(\mathrm{dq}, 1 \mathrm{H}, J 17.4\right.$ and $\left.7.3,-\mathrm{C}_{\mathrm{A}} \mathrm{HCH}_{3}\right)$, $2.32\left(\mathrm{dq}, 1 \mathrm{H}, J 17.4\right.$ and $\left.7.3,-\mathrm{CHH}_{\mathrm{B}} \mathrm{CH}_{3}\right), 1.66(\mathrm{~m}, 1 \mathrm{H}$, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.68\left(\mathrm{t}, 3 \mathrm{H}, J 7.3-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.56(\mathrm{~d}, 3 \mathrm{H}, J 6.8$, $\left.-\mathrm{CH}_{3}\right), 0.42\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 174.33$ $\left(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 153.51(\mathrm{C}=\mathrm{O}), 139.92,136.05,133.59$, 133.41, 133.18, 129.54, 129.11, 128.89, 128.78, 128.13, 127.99, 127.52, 127.31, 127.25, 125.22, 125.01, 124.55, 124.32 (aryl-C), $90.11(C-\beta), 64.37(C-\alpha), 30.82\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.16\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 22.31, $16.62\left(-\mathrm{CH}_{3}\right), 8.97\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
(S)-5,5-Di(4'-tolyl)-4-isopropyl-3-($1^{\prime \prime}$-oxopropyl)-1,3-oxazolidin-2-one 21c. Using method C with (S)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one $\mathbf{1 6 c}(0.250 \mathrm{~g}, 0.81 \mathrm{mmol})$ and propionyl chloride ($0.08 \mathrm{~cm}^{3} 0.92 \mathrm{mmol}$) followed by flash column chromatography using hexane-EtOAc ($3: 1$) as the eluant furnished the title compound as a colourless solid $(0.288 \mathrm{~g}$, $0.79 \mathrm{mmol}, 98 \%$), mp 58.5-60.5 ${ }^{\circ} \mathrm{C}$ (Found: C, $75.54 ; \mathrm{H}, 7.63$; $\mathrm{N}, 3.74$: $\mathrm{MH}^{+} 366.2042 . \mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires: $\mathrm{C}, 75.59 ; \mathrm{H}, 7.45$;

N, 3.83\%: 366.2069); $[a]_{\mathrm{D}}-218.9\left(c=1.00, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr})$ $1773(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1702(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.36-7.10(\mathrm{~m}$, 8 H , aryl- H), $5.33(\mathrm{~d}, 1 \mathrm{H}, J 3.5,-\mathrm{NCH}), 2.94(\mathrm{dq}, 1 \mathrm{H}, J 17.3$ and $\left.7.3,-\mathrm{CH}_{\mathrm{A}} \mathrm{HCH}_{3}\right), 2.73(\mathrm{dq}, 1 \mathrm{H}, J 17.3$ and 7.3 , $-\mathrm{CHH}_{\mathrm{B}} \mathrm{CH}_{3}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 1.09$ (t, $\left.3 \mathrm{H}, J 7.3-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, 3 \mathrm{H}, J 6.9,-\mathrm{CH}_{3}\right), 0.75(\mathrm{~d}, 3 \mathrm{H}$, $\left.J 6.9,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 174.22\left(-(\mathrm{C=O}) \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 153.40$ ($C=O$), 139.87, 137.81, 135.71, 129.70, 129.19, 126.00, 125.70 (aryl-C), $89.66(C-\beta), 64.60(C-\alpha), 30.08\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.10$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.02\left(-\mathrm{CH}_{3}\right), 21.26,21.18\left(-\mathrm{PhCH}_{3}\right), 16.60$ $\left(-\mathrm{CH}_{3}\right), 8.83\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Using method D with (S)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one $\mathbf{1 6 c}(0.650 \mathrm{~g}, 2.10 \mathrm{mmol})$ and propionyl chloride ($0.24 \mathrm{~cm}^{3}, 2.76 \mathrm{mmol}$) followed by flash column chromatography using EtOAc-hexane $(1: 1)$ as the eluant gave the title compound as a colourless oil ($0.568 \mathrm{~g}, 1.56 \mathrm{mmol}, 74 \%$) with identical spectroscopic data to those reported above.
(S)-5,5-Diphenyl-4-isopropyl-3-(1^{\prime}-oxo-3'-phenylpropyl)-

1,3-oxazolidin-2-one 20a. Using method C with (S)-5,5-diphenyl-4-isopropyl-1,3-oxazolidin-2-one 16a ($0.562 \mathrm{~g}, 2.00$ mmol) and dihydrocinnamoyl chloride ($0.3 \mathrm{~cm}^{3}, 2.1 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane ($17: 3$) furnished the title compound as a white solid $(0.379 \mathrm{~g}$, $0.92 \mathrm{mmol}, 46 \%$) (EtOAc-hexane), mp $89.0-92.5^{\circ} \mathrm{C}$ (lit. ${ }^{15}$ $97-98^{\circ} \mathrm{C}$) (Found: C, 78.51 ; H, 6.59; N, 3.31: $\mathrm{MH}^{+} 414.2072$. Calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3}$: C, $78.42 ; \mathrm{H}, 6.58 ; \mathrm{N}, 3.39 \%$: 414.2069); $[a]_{\mathrm{D}}-168.3\left(c=0.66, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{15}[a]_{\mathrm{D}}-179.0$ $\left(c=1.14, \mathrm{CHCl}_{3}\right)$); $v_{\text {max }}(\mathrm{KBr}) 1776(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1695(\mathrm{~s}, \mathrm{C}=\mathrm{O})$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.17(\mathrm{~m}, 15 \mathrm{H}$, aryl- H$), 5.39(\mathrm{~d}, 1 \mathrm{H}$, $J 3.3,-\mathrm{NCH}), 3.33-2.81\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.96(\mathrm{~m}, 1 \mathrm{H}$, $\left.-\mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.74(\mathrm{~d}, 3 \mathrm{H}, J 6.8$, $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 172.44\left(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}-\right), 153.23 \quad(\mathrm{C}=\mathrm{O})$, 142.51, 140.50, 138.35, 133.02, 129.14, 128.81, 128.60, 128.17, 126.36, 126.13, 125.81 (aryl- C), 89.64 ($C-\beta$), $64.74(C-\alpha), 33.09$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 30.66\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 30.08\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.93$, $16.56\left(-\mathrm{CH}_{3}\right)$.

Using method D with (S)-5,5-diphenyl-4-isopropyl-1,3-oxazolidin-2-one $16 \mathrm{a}(0.450 \mathrm{~g}, 1.60 \mathrm{mmol})$ and dihydrocinnamoyl chloride ($0.31 \mathrm{~cm}^{3}, 2.08 \mathrm{mmol}$) followed by flash column chromatography using EtOAc-hexane $(1: 1)$ as the eluant gave the title compound as a white solid $(0.556 \mathrm{~g}, 1.34$ $\mathrm{mmol}, 84 \%$) with identical spectroscopic data to those reported above.
(S)-5,5-Di(2'-naphthyl)-4-isopropyl-3-(1^{\prime}-oxo-3'-phenyl-propyl)-1,3-oxazolidin-2-one 20b. Using method C with (S)-5,5-di(2'-naphthyl)-4-isopropyl-1,3-oxazolidin-2-one 16b $(0.226 \mathrm{~g}$, $0.59 \mathrm{mmol})$ and dihydrocinnamoyl chloride $\left(0.10 \mathrm{~cm}^{3} 0.65\right.$ mmol) followed by flash column chromatography using EtOAc-hexane ($1: 1$) as the eluant furnished the title compound as a viscous, colourless oil $(0.294 \mathrm{~g}, 0.57 \mathrm{mmol}, 97 \%)$ (Found: $\mathrm{MH}^{+} 514.2390 . \mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{3}$ requires $\mathrm{MH}^{+}: 514.2382$); $[a]_{\mathrm{D}}-233.5\left(c=1.02, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}$ (liq. film) $1779(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $1712(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.15-7.09(\mathrm{~m}, 19 \mathrm{H}$, aryl- H), 5.66 (d, $1 \mathrm{H}, J 3.2,-\mathrm{NCH}), 3.34-2.87\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$), 2.02 $\left(\mathrm{m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right), 0.78(\mathrm{~d}, 3 \mathrm{H}$, $\left.J 7.0,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 172.53\left(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}-\right), 153.23(\mathrm{C}=\mathrm{O})$, $140.44,139.23,135.43,133.25,132.99,132.79,129.38,128.91$, $128.55,127.84,127.74,127.22,127.00,126.32,124.89,124.74$, 124.15, 123.89 (aryl- C), 90.01 ($C-\beta$), $64.18(C-\alpha), 36.94$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 30.60\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 30.33\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.16$, $16.58\left(-\mathrm{CH}_{3}\right)$.
(S)-5,5-Di(4'-tolyl)-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one 20c. Using method C with (S)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one $\mathbf{1 6 c} \quad(0.342 \mathrm{~g}, \quad 1.11$ mmol) and dihydrocinnamoyl chloride ($0.18 \mathrm{~cm}^{3}, 1.21 \mathrm{mmol}$) followed by flash column chromatography using EtOAchexane ($1: 1$) as the eluant furnished the title compound as a colourless oil ($0.402 \mathrm{~g}, 0.91 \mathrm{mmol}, 82 \%$) (Found: MH^{+} 442.2371. $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{3}$ requires MH^{+}: 442.2382); $[a]_{\mathrm{D}}-153.4$ $\left(c=1.05, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} 1784(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$;
$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.33-7.09(\mathrm{~m}, 13 \mathrm{H}, \operatorname{aryl}-H), 5.31(\mathrm{~d}, 1 \mathrm{H}, J 3.8$, $\left.-\mathrm{NCH}), 3.31-2.81\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.31(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH})_{3}\right)$, $2.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 1.95\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.83(\mathrm{~d}, 3 \mathrm{H}$, $\left.J 6.9,-\mathrm{CH}_{3}\right), 0.72\left(\mathrm{~d}, 3 \mathrm{H}, J 6.9,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 172.46$ $\left(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}-\right), 153.36(\mathrm{C}=\mathrm{O}), 140.56,139.80,138.55,137.84$, $135.61,129.74,129.21,128.59,126.31,126.00,125.67$ (aryl-C), $89.74(C-\beta), 64.75(C-\alpha), 36.95\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 30.65\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 30.03\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.94,21.26,21.19,16.60\left(-\mathrm{CH}_{3}\right)$.
Using method D with (S)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one 16c ($0.302 \mathrm{~g}, 0.98 \mathrm{mmol}$) and dihydrocinnamoyl chloride ($0.19 \mathrm{~cm}^{3}, 1.28 \mathrm{mmol}$) followed by flash column chromatography using EtOAc-hexane ($1: 1$) as the eluant gave the desired product as a pale yellow oil $(0.426 \mathrm{~g}$, $0.98 \mathrm{mmol}, 100 \%$) with identical spectroscopic data to those reported above.

General procedures for the alkylation of the N-acyl-1,3-oxazolidin-2-ones

Method E. Using LDA with 0.01 M phosphate buffer. To a solution of the appropriate N-acyl-1,3-oxazolidin-2-one THF $(0.15 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added a solution of lithium diisopropylamide [prepared from diisopropylamine (1.01 equiv.) in THF $(0.46 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ and n-butyllithium (1.6 M in hexane, 1.19 equiv.)] and the resulting enolate was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The appropriate alkyl halide (2.96 equiv.) was added dropwise over 10 min and the mixture stirred for 24 h at $0^{\circ} \mathrm{C}$. The reaction was quenched into 0.01 M phosphate buffer and the organic phase separated. The aqueous phase was washed with DCM ($\times 3$) and the organic extracts combined, washed with brine, dried over MgSO_{4} and the solvent remove in vacuo to give the crude alkylated products. Purification via flash column chromatography afforded the desired products.

Method F. Using LDA with 0.16 M phosphate buffer. As per method E, except the reaction mixture was quenched into enough 0.16 M phosphate buffer so that pH 7 was maintained.

Method G. Using LDA with aqueous ammonium chloride. As per method E , except the reaction mixture was quenched into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$.

Method H. Using NaHMDS. To a solution of the appropriate N-acyl-1,3-oxazolidin-2-one in THF $(0.24 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added a solution of sodium hexamethyldisilylamide in THF ($2 \mathrm{M}, 1.11$ equiv.) and the resulting enolate was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Methyl iodide (5 equiv.) was added and the mixture stirred for 24 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the product was extracted using DCM ($\times 2$) and EtOAc. The organic extracts were combined and washed with brine, dried over MgSO_{4} and the solvent removed in vacuo to give the crude methylated N-acyl-1,3-oxazolidin-2-one. The pure methylated material was obtained via flash column chromatography.
(2^{\prime} R,4S)-5,5-Diphenyl-4-isopropyl-3-(1^{\prime}-oxo-2'-benzyl-propyl)-1,3-oxazolidin-2-one 22a. Using method E with $(S)-5,5-$ diphenyl-4-isopropyl-3-(1'-oxopropyl)-1,3-oxazolidin-2-one 21a $(0.150 \mathrm{~g}, 0.455 \mathrm{mmol})$ and benzyl bromide $\left(0.16 \mathrm{~cm}^{3}, 1.35\right.$ mmol) gave the crude product as a yellow semi-solid. Purification via flash column chromatography using DCM-hexane ($3: 1$) as the eluant furnished the title compound ($0.065 \mathrm{~g}, 0.15$ $\mathrm{mmol}, 33 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.16(\mathrm{~m}, 15 \mathrm{H}$, aryl- H$), 5.36$ (d, $1 \mathrm{H}, J 3.3,-\mathrm{NCH}), 4.10-3.97\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.16(\mathrm{dd}, 1 \mathrm{H}$, $J 13.4$ and $\left.7.3,-\mathrm{CH}_{\mathrm{A}} \mathrm{HPh}\right), 2.60(\mathrm{dd}, 1 \mathrm{H}, J 13.4$ and 7.9 , $\left.{ }_{-} \mathrm{CH} H B \mathrm{Ph}\right), 1.87\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84(\mathrm{~d}, 3 \mathrm{H}, J 6.9$, $\left.-\mathrm{CH}_{3}\right), 0.70\left(\mathrm{~d}, 3 \mathrm{H}, J 6.9,-\mathrm{C} H_{3}\right), 0.59\left(\mathrm{~d}, 3 \mathrm{H}, J 6.7,-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $98.5: 1.5$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the benzyl methylene resonances for the major ($\delta 3.16$ and 2.60) and minor ($\delta 2.81$ and 2.45) isomers.

Using method F with (S)-5,5-diphenyl-4-isopropyl-3-(1'-oxopropyl)-1,3-oxazolidin-2-one 21a ($0.154 \mathrm{~g}, 0.458 \mathrm{mmol}$) and benzyl bromide ($0.17 \mathrm{~cm}^{3}, 1.43 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(4: 1)$ as the eluant furnished the desired compound 22a as a white crystalline solid $(0.134 \mathrm{~g}, 0.315 \mathrm{mmol}, 69 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.48-7.10(\mathrm{~m}$, 15 H , aryl $-H$), $5.35(\mathrm{~d}, 1 \mathrm{H}, J 3.5,-\mathrm{NCH}), 4.03(\mathrm{~m}, 1 \mathrm{H}$, $-\mathrm{CHCH}_{3}$), $3.16\left(\mathrm{dd}, 1 \mathrm{H}, J 13.6\right.$ and $7.3,-\mathrm{CH}_{A} \mathrm{HPh}$), $2.60(\mathrm{dd}$, $1 \mathrm{H}, J 13.6$ and $\left.7.7,-\mathrm{CH} H_{B} \mathrm{Ph}\right), 1.80\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84$ (d, $\left.3 \mathrm{H}, J 6.5,-\mathrm{CH}_{3}\right), 0.70\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right), 0.59(\mathrm{~d}$, $\left.3 \mathrm{H}, J 7.0,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 176.41\left(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}-\right), 153.04$ ($C=O$), 142.52, 140.50, 139.46, 138.32, 129.43, 129.03, 128.77, 128.57, 128.50, 128.15, 126.46, 126.11, 125.87 (aryl-C), 89.47 $(C-\beta), 64.67(C-\alpha), 39.97\left(-\mathrm{CH}_{2}-\right), 39.37\left(\mathrm{CHCH}_{3}\right), 30.11$ $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.70,16.53,16.30\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $98: 2$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the benzyl methylene resonances for the major ($\delta 3.19$ and 2.63) and minor ($\delta 2.85$ and 2.48) isomers.

Using method G with (S)-5,5-diphenyl-4-isopropyl-3-(1'-oxopropyl)-1,3-oxazolidin-2-one $21 \mathrm{a}(0.337 \mathrm{~g}, 1.00 \mathrm{mmol}$) and benzyl bromide ($0.36 \mathrm{~cm}^{3}, 3.03 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane ($4: 1$) as the eluant furnished the desired compound as a white solid $(0.196 \mathrm{~g}$, $0.46 \mathrm{mmol}, 46 \%$). The diastereomeric ratio of $98.5: 1.5$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the benzyl methylene resonances for the major ($\delta 3.16$ and 2.60) and minor ($\delta 2.81$ and 2.45) isomers.

A portion of 22a was recrystallised from pentane to give colourless needle-like crystals, mp 134-136 ${ }^{\circ} \mathrm{C}$ (Found: C, $78.40 ; \mathrm{H}, 6.72$; $\mathrm{N}, 3.03: \mathrm{MH}^{+} 428.2191 . \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires: C , $78.65 ; \mathrm{H}, 6.85 ; \mathrm{N}, 3.28 \%: \mathrm{MH}^{+} 428.2226$); $[a]_{\mathrm{D}}-200.6$ ($c=0.53$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 1774(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1692(\mathrm{~s}, \mathrm{C}=\mathrm{O})$. The remaining spectroscopic data were identical to those reported above for method F . The diastereomeric ratio was found to be $>99: 1$.
($2^{\prime \prime} R, 4 S$)-5,5-Di(2^{\prime}-naphthyl)-4-isopropyl-3-(1^{\prime}-oxo-2'-
benzylpropyl)-1,3-oxazolidin-2-one 22b. Using method G with (S)-5,5-di(2'-naphthyl)-4-isopropyl-3-(1"-oxopropyl)-1,3-
oxazolidin-2-one 21b $(0.350 \mathrm{~g}, 0.80 \mathrm{mmol})$ and benzyl bromide $\left(0.29 \mathrm{~cm}^{3}, 2.43 \mathrm{mmol}\right)$ followed by flash column chromatography using DCM-hexane $(7: 3)$ as the eluant furnished the desired compound as a white semi solid $(0.234 \mathrm{~g}, 0.44 \mathrm{mmol}$, 55% (Found: MH^{+}528.2515. $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires: 528.2539); $v_{\text {max }}(\mathrm{KBr}) 1782(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1702(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.15-$ $7.14(\mathrm{~m}, 19 \mathrm{H}$, aryl $-H), 5.65(\mathrm{~d}, 1 \mathrm{H}, J 2.7,-\mathrm{NCH}), 4.06(\mathrm{~m}, 1 \mathrm{H}$, $-\mathrm{CHCH}_{3}$), $3.20\left(\mathrm{dd}, 1 \mathrm{H}, J 13.3\right.$ and $7.3,-\mathrm{CH}_{A} \mathrm{HPh}$), 2.62 (dd, $1 \mathrm{H}, J 13.3$ and $\left.7.8,-\mathrm{CHH}_{B} \mathrm{Ph}\right), 1.92\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84$ (d, 3H, J6.4, - CH_{3}), $0.76\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.64(\mathrm{~d}, 3 \mathrm{H}$, $\left.J 6.8,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 176.58\left(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}-\right), 152.99(\mathrm{C}=\mathrm{O})$, 139.43, 135.43, 132.98, 132.79, 129.45, 129.25, 129.01, 128.77, 128.60, 128.52, 127.84, 127.73, 127.20, 126.98, 126.90, 126.49, 124.92, 124.18, 123.99 (aryl- C), $89.85(C-\beta), 64.19(C-\alpha), 40.09$ $\left(-\mathrm{CH}_{2}-\right), 39.47\left(-\mathrm{CHCH}_{3}\right), 30.15\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.96,16.57$, $16.28\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $95.5: 4.5$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the benzyl methylene resonances for the major ($\delta 3.20$ and 2.62) and minor ($\delta 2.85$ and 2.47) isomers.

Using method E with (S)-5,5-di(2^{\prime}-naphthyl)-4-isopropyl-3-(1"-oxopropyl)-1,3-oxazolidin-2-one 21b $(0.123 \mathrm{~g}, 0.281 \mathrm{mmol})$ and benzyl bromide ($0.1 \mathrm{~cm}^{3}, 0.84 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(7: 3)$ as the eluant furnished the desired compound as a white semi-solid ($0.056 \mathrm{~g}, 0.1 \mathrm{mmol}, 34 \%$). The spectroscopic data were identical to those reported above. The diastereomeric ratio of $96: 4$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the benzyl methylene resonances for the major ($\delta 3.19$ and 2.62) and minor ($\delta 2.85$ and 2.49) isomers.
($\left.2^{\prime \prime} R, 4 S\right)$-5,5-Di(4^{\prime}-tolyl)-4-isopropyl-3-(1^{\prime}-oxo-2'-benzyl-propyl)-1,3-oxazolidin-2-one 22c. Using method G with (S)-5,5-di(4'-tolyl)-4-isopropyl-3-(1"-oxopropyl)-1,3-oxazolidin-2-one

21c $(0.259 \mathrm{~g}, 0.71 \mathrm{mmol})$ and benzyl bromide $\left(0.26 \mathrm{~cm}^{3}, 2.19\right.$ mmol) followed by flash column chromatography using DCMhexane $(4: 1)$ as the eluant furnished the desired compound as a pale yellow oil ($0.213 \mathrm{~g}, 0.47 \mathrm{mmol}, 66 \%$) (Found: MH^{+} $456.2559 . \mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires: 456.2539); $v_{\text {max }}(\mathrm{KBr}) 1779(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}), 1770(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.32-7.09(\mathrm{~m}, 13 \mathrm{H}$, arylH), $5.30(\mathrm{~d}, 1 \mathrm{H}, J 3.5,-\mathrm{NCH}), 4.04\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 3.17$ (dd, $1 \mathrm{H}, J 13.2$ and $\left.7.0,-\mathrm{CH}_{A} \mathrm{HPh}\right), 2.59(\mathrm{dd}, 1 \mathrm{H}, J 13.3$ and 8.3, $-\mathrm{CH} H_{B} \mathrm{Ph}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right)$, $1.87\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.70(\mathrm{~d}$, $\left.3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.58\left(\mathrm{~d}, 3 \mathrm{H}, J 6.5,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 176.48$ $\left(-(C=O) \mathrm{CH}_{2}-\right), 153.16(\mathrm{C}=\mathrm{O}), 139.82,139.51,138.55,137.83$, $135.65,129.63,129.45,129.45,129.19,128.49,126.46,126.02$, 125.78 (aryl-C), $89.58(C-\beta), 64.65(C-\alpha), 40.04\left(-\mathrm{CH}_{2}-\right), 39.38$ $\left(-\mathrm{CHCH}_{3}\right), 29.86\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.77\left(-\mathrm{CH}_{3}\right), 21.28,21.20$ $\left(\mathrm{PhCH}_{3}-\right), 16.52,16.33\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of 98:2 was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major ($\delta 0.86$ and 0.58) and minor ($\delta 1.23$ and 0.76) isomers.
Using method E with (S)-5,5-di(4'-tolyl)-4-isopropyl-3-(1"-oxopropyl)-1,3-oxazolidin-2-one 21c ($0.119 \mathrm{~g}, 0.324 \mathrm{mmol}$) and benzyl bromide ($0.12 \mathrm{~cm}^{3}, 0.95 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(4: 1)$ as the eluant furnished the desired compound as a pale yellow oil $(0.0461 \mathrm{~g}$, $0.1 \mathrm{mmol}, 31 \%$) The diastereomeric ratio of $98: 2$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major ($\delta 0.70$ and 0.58) and minor ($\delta 1.23$ and 0.76) isomers.
(2^{\prime} S,4S)-5,5-Diphenyl-4-isopropyl-3-(1^{\prime}-oxo-2'-benzyl-propyl)-1,3-oxazolidin-2-one 23a. Using method E with (S)-5,5-diphenyl-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazol-idin-2-one 20a ($0.110 \mathrm{~g}, 0.27 \mathrm{mmol}$) and methyl iodide (0.05 $\mathrm{cm}^{3}, 0.80 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(4: 1)$ as the eluant furnished the desired product as a colourless oil ($0.056 \mathrm{~g}, 0.13 \mathrm{mmol}, 37 \%$) (Found: $\mathrm{MH}^{+} 428.2231 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{3}$ requires: $\mathrm{MH}^{+} 428.2226$); $v_{\text {max }}(\mathrm{KBr}) 1780(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1708(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38-$ $6.97(\mathrm{~m}, 15 \mathrm{H}$, aryl- H), $5.37(\mathrm{~d}, 1 \mathrm{H}, J 3.3,-\mathrm{NCH}), 4.03-3.92$ $\left(\mathrm{m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 2.82\left(\mathrm{dd}, 1 \mathrm{H}, J 13.8\right.$ and 7.1, $\left.-\mathrm{CH}_{A} \mathrm{HPh}\right)$, $2.45\left(\mathrm{dd}, 1 \mathrm{H}, J 13.8\right.$ and $\left.7.4,-\mathrm{CH}_{B} \mathrm{Ph}\right), 1.97(\mathrm{~m}, 1 \mathrm{H}$, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~d}, 3 \mathrm{H}, J 6.9,-\mathrm{CH}_{3}\right), 0.88(\mathrm{~d}, 3 \mathrm{H}, J 6.8$, $\left.-\mathrm{CH}_{3}\right), 0.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 6.8,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 176.36$ $(-(C=\mathrm{O}) \mathrm{CH}-), 152.89(C=\mathrm{O}), 142.32,139.29,138.38,129.06$, 129.01, 128.77, 128.57, 128.40, 128.13, 126.26, 126.14, 125.78 (aryl-C), $89.47(C-\beta), 64.56(C-\alpha), 39.42\left(-\mathrm{CH}_{2}-\right), 38.81$ $\left(\mathrm{CHCH}_{3}\right), 30.13\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.01,17.77,16.53\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $96: 4$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major ($\delta 0.88$ and 0.77) and minor ($\delta 0.70$ and 0.59) isomers.

Using method H with (S)-5,5-diphenyl-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one 20a ($0.150 \mathrm{~g}, 0.36$ mmol) and methyl iodide ($0.12 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(4: 1)$ as the eluant furnished the title compound as a colourless oil $(0.106 \mathrm{~g}$, $0.25 \mathrm{mmol}, 69 \%$). Spectroscopic analysis indicated that this material was identical to that given above. The diastereomeric ratio of $95.5: 4.5$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the benzyl methylene resonances for the major ($\delta 2.81$ and 2.45) and minor ($\delta 3.16$ and 2.60) isomers.
(2"S,4S)-5,5-Di(2'-naphthyl)-4-isopropyl-3-(1'-oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one 23b. Using method F with (S)-5,5-di(2'-naphthyl)-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one 20b ($0.137 \mathrm{~g}, 0.27 \mathrm{mmol}$) and methyl iodide $\left(0.05 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}\right)$ followed by flash column chromatography using DCM-hexane $(4: 1)$ as the eluant furnished the desired product as a viscous colourless oil $(0.060 \mathrm{~g}$, $0.11 \mathrm{mmol}, 42 \%$) (Found: $\mathrm{MH}^{+} 528.2380 . \mathrm{C}_{36} \mathrm{H}_{34} \mathrm{NO}_{3}$ requires 528.2539); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1778(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1702(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$;
$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.15-7.09(\mathrm{~m}, 19 \mathrm{H}$, aryl- H), $5.65(\mathrm{~d}, 1 \mathrm{H}, J 3.0$, $-\mathrm{NCH}), 4.01\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 2.85(\mathrm{dd}, 1 \mathrm{H}, J 13.9$ and 7.9 , $\left.-\mathrm{CH}_{A} \mathrm{HPh}\right), 2.49\left(\mathrm{dd}, 1 \mathrm{H}, J 13.9\right.$ and $\left.6.9,-\mathrm{CH} H_{B} \mathrm{Ph}\right)$, $2.02\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 6.8,-\mathrm{CH}_{3}\right), 0.90(\mathrm{~d}$, $\left.3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 6.8,-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 176.52$ $(-(C=\mathrm{O}) \mathrm{CH}-), 152.86(C=\mathrm{O}), 139.07,139.04,135.48,133.23$, $132.99,132.76,129.26,129.03,128.71,128.60,128.50,128.15$, 127.84, 127.68, 127.14, 126.98, 126.78, 126.05, 124.82, 124.48, 124.15, 123.91 (aryl- C), 89.79 ($C-\beta$), 63.97 ($C-\alpha$), 39.40 $\left(-\mathrm{CH}_{2}-\right), 38.79\left(-\mathrm{CHCH}_{3}\right), 30.42\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.26,18.17$, $16.53\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $93: 7$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major ($\delta 0.82$) and minor ($\delta 0.64$) isomers.

Using method H with (S)-5,5-di(2'-naphthyl)-4-isopropyl-3(1 '-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one 20b (0.694 g , $1.35 \mathrm{mmol})$ and methyl iodide ($0.42 \mathrm{~cm}^{3}, 6.74 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane ($7: 3$) as the eluant furnished the title compound as a colourless viscous oil ($0.413 \mathrm{~g}, 0.78 \mathrm{mmol}, 58 \%$). Spectroscopic analysis indicated that this material was identical to that given above. The diastereomeric ratio of $91: 9$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major ($\delta 0.94$ and 0.82) and minor ($\delta 0.77$ and 0.64) isomers.
(2"S,4S)-5,5-Di(4'-tolyl)-4-isopropyl-3-(1^{\prime}-oxo-2'-benzyl-propyl)-1,3-oxazolidin-2-one 23c. Using method F with (S)-5,5-di(4'-tolyl)-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazol-idin-2-one 20c ($0.176 \mathrm{~g}, 0.40 \mathrm{mmol}$) and methyl iodide (0.08 $\mathrm{cm}^{3}, 1.28 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane $(4: 1)$ as the eluant furnished the desired product as a colourless oil ($0.058 \mathrm{~g}, 0.13 \mathrm{mmol}, 32 \%$) (Found: $\mathrm{MH}^{+} 456.2511 . \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{3}$ requires: 456.2539); $v_{\text {max }}(\mathrm{KBr})$ $1782(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1702(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.33-6.97(\mathrm{~m}$, 13 H , aryl- H), $5.30(\mathrm{~d}, 1 \mathrm{H}, J 3.2,-\mathrm{NCH}), 3.97(\mathrm{~m}, 1 \mathrm{H}$, $-\mathrm{CHCH}_{3}$), $2.84\left(\mathrm{dd}, 1 \mathrm{H}, J 13.9\right.$ and 7.3, $\left.-\mathrm{CH}_{A} \mathrm{HPh}\right), 2.47(\mathrm{dd}$, $1 \mathrm{H}, J 13.9$ and $\left.7.3,-\mathrm{CH} H_{B} \mathrm{Ph}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.29(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{PhCH} 3), 1.95\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23(\mathrm{~d}, 3 \mathrm{H}, J 7.0$, $-\mathrm{CH}_{3}$), $0.86\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right), 0.77\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8,-\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 176.38(-(C=\mathrm{O}) \mathrm{CH}-), 153.04(C=\mathrm{O}), 139.62,139.51$, $138.55,137.83,135.65,129.63,129.45,129.45,129.19,128.49$, 126.46, 126.02, 125.78 (aryl- C), 89.61 ($C-\beta$), 64.58 ($(-\alpha), 39.37$ $\left(-\mathrm{CH}_{2}-\right), 38.83\left(-\mathrm{CHCH}_{3}\right), 30.08\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.02\left(-\mathrm{CH}_{3}\right)$, 21.26, $21.19\left(\mathrm{PhCH}_{3}-\right), 17.83,16.58\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $97.5: 2.5$ was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major $(\delta 0.77)$ and minor $(\delta 0.58)$ isomers.

Using method H with (S)-5,5-di(4^{\prime}-tolyl)-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one 20c $(0.629 \mathrm{~g}, 1.43$ mmol) and methyl iodide ($0.44 \mathrm{~cm}^{3}, 7.13 \mathrm{mmol}$) followed by flash column chromatography using DCM-hexane ($4: 1$) furnished the title compound as a colourless oil $(0.416 \mathrm{~g}, 0.91$ $\mathrm{mmol}, 64 \%$). Spectroscopic analysis indicated that this material was identical to that given above. The diastereomeric ratio of 97: 3 was obtained by measurement and comparison of peak areas in the ${ }^{1} \mathrm{H}$ NMR for the methyl resonances for the major ($\delta 0.85$ and $\delta 0.76$) and minor ($\delta 0.69$ and 0.58) isomers.

X-Ray crystallographic study of ($\mathbf{2}^{\prime} R, 4 S$)-5,5-diphenyl-4-isopropyl-3-(1'-oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one 22a

Colourless crystals of 22a were grown from pentane solution. A sample with approximate dimensions $0.45 \times 0.25 \times 0.15 \mathrm{~mm}$ was mounted directly into the cold-stream of a Rigaku AFC7S diffractometer using an oil drop method.

(2'S,4S)-3-(2'-Azido-3'-phenyl-1'-oxopropyl)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one 24

To a solution of potassium hexamethyldisilylazide (0.5 M in THF, $2.54 \mathrm{~cm}^{3}, 1.27 \mathrm{mmol}$) in THF ($4 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under a
nitrogen atmosphere was added a pre-cooled solution of (S)-5,5-di(4'-tolyl)-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one $\mathbf{2 0 c}(0.503 \mathrm{~g}, 1.11 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ via cannula transfer. The resulting pale yellow potassium enolate was aged for 30 min at $-78^{\circ} \mathrm{C}$. A pre-cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of trisyl \S azide ${ }^{24}(0.410 \mathrm{~g}, 1.33 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ was added via cannula. After the addition was complete, the bright yellow reaction mixture was stirred for 2 min and then quenched with glacial acetic acid $\left(0.30 \mathrm{~cm}^{3}, 5.08 \mathrm{mmol}\right)$. The reaction mixture was allowed to warm to $\sim 30^{\circ} \mathrm{C}$ in a water bath over 45 min . The solution was partitioned between DCM ($25 \mathrm{~cm}^{3}$) and brine $\left(35 \mathrm{~cm}^{3}\right)$. The aqueous phase was washed with DCM $(3 \times 10$ cm^{3}). The combined organic extracts were washed with aqueous NaHCO_{3} solution, dried over MgSO_{4} and evaporated. Purification of the crude residue twice by column chromatography using 5:1 hexane-EtOAc afforded the desired product as a colourless oil ($0.354 \mathrm{~g}, 0.73 \mathrm{mmol}, 65 \%$) (Found: MH^{+} 483.2396. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires: 483.2396); $v_{\text {max }}$ (liq. film) 2114 (s, $-\mathrm{N}_{3}$), $1782(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1710(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.32-$ $6.95(\mathrm{~m}, 13 \mathrm{H}$, aryl- H), $5.23(\mathrm{~d}, 1 \mathrm{H}, J 3.5,-\mathrm{NCH}), 5.14(\mathrm{dd}$, $1 \mathrm{H}, J 8.4$ and $5.4,-\mathrm{CH}_{3}$), $2.66(\mathrm{dd}, 1 \mathrm{H}, J 14.3$ and 5.4 , $\left.{ }_{-} \mathrm{CH}_{A} \mathrm{HCHN}_{3}\right), 2.60\left(\mathrm{dd}, 1 \mathrm{H}, J 14.3\right.$ and $\left.8.4,-\mathrm{CHH}_{B} \mathrm{CHN}_{3}\right)$, $2.24\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 1.94(\mathrm{~m}, 1 \mathrm{H}$, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, J 7.2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.74(\mathrm{~d}, 3 \mathrm{H}, J 7.2$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.22(-(\mathrm{C}=\mathrm{O}) \mathrm{CH}-), 152.86(\mathrm{C}=\mathrm{O})$, 139.41, 138.84, 138.13, 135.95, 135.00, 129.84, 129.47, 129.30, 128.87, 128.24, 125.87, 125.46 (aryl-C), 90.49 ($C-\beta$), 65.54 $(\mathrm{C}-\alpha), 61.76\left(-\mathrm{CHN}_{3}\right), 37.02\left(-\mathrm{CH}_{2}-\right), 29.93\left(-\mathrm{CHCH}_{3}\right), 21.90$ $\left(-\mathrm{CH}_{3}\right), 21.26,21.18(-\mathrm{PhCH} 3), 16.60\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $96: 4$ was measured by HPLC analysis (Zorbax column) using tert-butyl methyl ether-isooctane $(99: 1)$ as the eluant at $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ (minor peak 27.46 min , major peak 30.56 min).

(2"S,4S)-5,5-Di(4'-tolyl)-3-(2"-bromo-3"-phenyl-1"-oxopropyl)-4-isopropyl-1,3-oxazolidin-2-one 25

To a solution of (S)-5,5-di(4'-tolyl)-4-isopropyl-3-(1'-oxo-3'-phenylpropyl)-1,3-oxazolidin-2-one $20 \mathrm{c}(0.216 \mathrm{~g}, 0.49 \mathrm{mmol})$ in $\operatorname{DCM}\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2} was added diisopropylethylamine ($0.11 \mathrm{~cm}^{3}, 0.63 \mathrm{mmol}$) followed by the dropwise addition of dibutylboryl triflate ($\left(1 \mathrm{M}\right.$ in $\left.\mathrm{DCM}, 0.52 \mathrm{~cm}^{3} 0.52 \mathrm{mmol}\right)$. The pale yellow boron enolate was aged for 15 min at $-78^{\circ} \mathrm{C}$ and then for 1 h at $0^{\circ} \mathrm{C}$. The boron enolate was then added rapidly to a pre-cooled slurry of N-bromosuccinimide $(0.117 \mathrm{~g}$, $0.66 \mathrm{mmol})$ in $\mathrm{DCM}\left(1 \mathrm{~cm}^{3}\right)$ via cannula transfer. The mixture was aged for 1.5 h at $-78^{\circ} \mathrm{C}$ before a red slurry was formed which was stirred at $-78^{\circ} \mathrm{C}$ for a further 1 h . The reaction mixture was quenched by pouring into 0.5 M sodium bisulfatebrine ($1: 1,10 \mathrm{~cm}^{3}$). The solution was extracted with EtOAc ($3 \times 5 \mathrm{~cm}^{3}$) and the combined organic layers were washed with 0.5 M aqueous sodium thiosulfate-brine $\left(10 \mathrm{~cm}^{3}\right)$ and brine $\left(10 \mathrm{~cm}^{3}\right)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude α-bromocarboximide as a yellow oil (0.306 g); $v_{\text {max }}$ (liq. film) 1785 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1708 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 700 (s, $\mathrm{C}-\mathrm{Br}$) cm^{-1}; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-6.96(\mathrm{~m}, 13 \mathrm{H}$, aryl- H), $5.84(\mathrm{dd}, 1 \mathrm{H}, J 8.8$ and $6.5,-\mathrm{C} H \mathrm{Br}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J 3.1,-\mathrm{NCH}), 3.48$ (dd, 1H, J 14.1 and $8.8,-\mathrm{CH}_{A} \mathrm{HCHN}_{3}$), $3.21(\mathrm{dd}, 1 \mathrm{H}, J 14.1$ and 6.5 , $\left.\left.-\mathrm{CHH}_{B} \mathrm{CHN}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.30(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH})_{3}\right)$, $2.01\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 7.0,-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84$ (d, 3H, J7.0, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

(2'R,4S)-3-(2'-Azido-3'-phenyl-1'-oxopropyl)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one 26

To a solution of the unpurified α-bromocarboximide 25 (0.281 $\mathrm{g}, 1.47 \mathrm{mmol})$ in $\mathrm{DCM}\left(4 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added tetramethylguanidinium azide ${ }^{25}(0.233 \mathrm{~g}, 1.47 \mathrm{mmol})$ in one portion. The

[^2]resulting solution was stirred for 4 h at $0^{\circ} \mathrm{C}$ and then quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}\left(15 \mathrm{~cm}^{3}\right)$ and the product was extracted using DCM $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The organic extracts were combined and washed with brine $\left(15 \mathrm{~cm}^{3}\right)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo to give a yellow semi-solid. The α-azidocarboximide was purified by column chromatography using hexane-EtOAc $(5: 1)$ then hexane$\operatorname{EtOAc}(7: 1)$ as the eluant which furnished the title compound as a colourless oil $(0.189 \mathrm{~g})$, contaminated by the starting oxazolidin-2-one 20c ($68: 32$), corresponding to an overall yield of 58% (Found: $\mathrm{MH}^{+} 500.2662 . \mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires: 500.2662); $v_{\text {max }}$ (liq. film) $2114\left(\mathrm{~s},-\mathrm{N}_{3}\right), 1782(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1710(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-7.13(\mathrm{~m}, 13 \mathrm{H}$, aromatic- H), 5.42 (d, $1 \mathrm{H}, J 3.3,-\mathrm{NCH}), 5.09\left(\mathrm{dd}, 1 \mathrm{H}, J 10.1\right.$ and $\left.4.3,-\mathrm{CHN}_{3}\right)$, $3.44\left(\mathrm{dd}, 1 \mathrm{H}, J 13.6\right.$ and $\left.4.3,-\mathrm{CH}_{A} \mathrm{HCHN}_{3}\right), 3.00(\mathrm{dd}, 1 \mathrm{H}$, $J 13.6$ and $\left.10.3,-\mathrm{CHH}_{B} \mathrm{CHN}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.33$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{PhCH}_{3}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88(\mathrm{~d}, 3 \mathrm{H}, J 6.8$, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.73\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.48$ $(-(C=O) \mathrm{CH}-), 152.85$ ($C=\mathrm{O}$), 139.17, 138.98, 138.10, 136.23, 135.24, 129.91, 128.77, 128.60, 128.58, 127.46, 125.69, 125.62 (aryl-C), $90.68(C-\beta), 64.79(C-\alpha), 62.07\left(-\mathrm{CHN}_{3}\right), 38.09$ $\left(-\mathrm{CH}_{2}-\right), \quad 30.04\left(-\mathrm{CHCH}_{3}\right), \quad 21.95\left(-\mathrm{CH}_{3}\right), \quad 21.27, \quad 21.18$ $\left(-\mathrm{PhCH}_{3}\right), 16.47\left(-\mathrm{CH}_{3}\right)$. The diastereomeric ratio of $95.5: 4.5$ was measured by HPLC analysis (Zorbax normal phase column) using tert-butyl methyl ether and isooctane (99:1) as the eluant at $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ (major peak 32.26 min , minor peak 39.13 min).

General procedure I. Hydrolysis of the alkylated oxazolidin-2ones

A portion of the alkylated 1,3-oxazolidin-2-one was dissolved in THF- $\mathrm{H}_{2} \mathrm{O}(3: 1$ mixture, 0.06 M$)$ and cooled in an ice bath. Lithium hydroxide (2 equiv.) was added in one portion and the mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 24 h . A saturated solution of NaHCO_{3} was added and the organic and aqueous layers were separated. The aqueous layer was washed with DCM $(\times 3)$. The organic extracts were combined, washed with brine, dried over MgSO_{4} and the solvent removed in vacuo to give the auxiliary as a white solid which was either subjected to flash column chromatography using ethyl acetate-hexane $(1: 1)$ as the eluant or recrystallised from the appropriate solvent. The spectroscopic data of the recovered auxiliaries were identical to those recorded above.

To the original aqueous extract was added 1 M HCl until pH $2-3$ was reached. The mixture was washed with EtOAc $(\times 3)$ and the organic extracts were combined, washed with brine, dried over MgSO_{4} and the solvent removed in vacuo followed by flash column chromatography using ethyl acetate-hexane (1:1) as the eluant to give the carboxylic acid, 2-methyl-3-phenylpropionic acid $\mathbf{2 7}$ or $\mathbf{2 8}$ as a colourless liquid (Found: MH^{+} 165.0942. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ requires: 165.0916); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.34-7.19$ $\left(\mathrm{m}, 5 \mathrm{H}\right.$, aryl- H), $3.09\left(\mathrm{dd}, 1 \mathrm{H}, J 12.8\right.$ and $\left.7.8,-\mathrm{CH}_{A} \mathrm{HPh}\right)$, 2.85-2.64 (m, 2H, - $\mathrm{CHH}_{B} \mathrm{Ph},-\mathrm{CHCH}_{3}$), $1.20(\mathrm{~d}, 3 \mathrm{H}, J 6.8$, $-\mathrm{CH}_{3}$). The absolute configuration and enantiomeric purity were assigned by comparison of the measured optical rotation with literature values (2798% ee $[a]_{\mathrm{D}}-26.2\left(c=1.0, \mathrm{CHCl}_{3}\right), \mathbf{2 8}$ 95% ee $[a]_{\mathrm{D}}+25.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$). ${ }^{27}$

Hydrolysis of ($2^{\prime} R, 4 S$)-5,5-diphenyl-4-isopropyl-3-(1^{\prime}-oxo-2^{\prime}-benzylpropyl)-1,3-oxazolidin-2-one 22a. Using method I with the title compound $(0.061 \mathrm{~g}, 0.141 \mathrm{mmol}, \mathrm{dr}>99: 1)$ gave (S)-5,5-diphenyl-4-isopropyl-1,3-oxazolidin-2-one 16a as a white solid ($0.0371 \mathrm{~g}, 0.132 \mathrm{mmol}, 94 \%$), mp $247-250^{\circ} \mathrm{C}$ (EtOH-H2O) (lit. ${ }^{13} 253.2-253.9^{\circ} \mathrm{C}$) (Found: C, 76.80; H, 6.99; $\mathrm{N}, 4.82$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 76.84 ; \mathrm{H}, 6.81 ; \mathrm{N}$, $4.98 \%) ;[a]_{\mathrm{D}}-260.4\left(c=0.255, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{13}[a]_{\mathrm{D}}-253.1$ $\left(c=0.1, \mathrm{CHCl}_{3}\right)$. Also isolated as a colourless oil was $(R)-2$ -methyl-3-phenylpropionic acid 27 ($0.0139 \mathrm{~g}, 0.086 \mathrm{mmol}, 60 \%$); $[a]_{\mathrm{D}}-26.1\left(c=0.12, \mathrm{CHCl}_{3}\right), 98 \%$ ee.

Hydrolysis of ($2^{\prime \prime} R, 4 S$)-5,5-di(2^{\prime}-naphthyl)-4-isopropyl-3-(1'-oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one $22 b$. Using method I with the title compound ($0.138 \mathrm{~g}, 0.262 \mathrm{mmol}$, dr $95.5: 4.5$) gave (S)-5,5-di(2'-naphthyl)-4-isopropyl-1,3-oxazol-idin-2-one 16b as a white solid ($0.0912 \mathrm{~g}, 0.239 \mathrm{mmol}, 91 \%$). Also isolated as a colourless oil was (R)-2-methyl-3-phenylpropionic acid $27(0.0304 \mathrm{~g}, 0.185 \mathrm{mmol}, 71 \%) ;[]_{\mathrm{D}}-24.6$ ($c=1.14, \mathrm{CHCl}_{3}$), 92% ee.
Hydrolysis of (2"R,4S)-5,5-di(4'-tolyl)-4-isopropyl-3-($1^{\prime}-$ oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one $22 c$. Using method I with the title compound $(0.143 \mathrm{~g}, 0.314 \mathrm{mmol}, \mathrm{dr} 98: 2)$ gave (S)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one 16c as a white solid ($0.095 \mathrm{~g}, 0.307 \mathrm{mmol}, 98 \%)$, $\mathrm{mp} 181-188^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C, 77.60; H, 7.48; N, 4.28. Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $77.644 ; \mathrm{H}, 7.48 ; \mathrm{N}, 4.53 \%$). Also isolated as a colourless oil was (R)-2-methyl-3-phenylpropionic acid $27(0.0281 \mathrm{~g}, 0.171$ $\mathrm{mmol}, 55 \%)$; $[a]_{\mathrm{D}}-25.7\left(c=0.92, \mathrm{CHCl}_{3}\right), 96 \%$ ee.
Hydrolysis of (2'S,4S)-5,5-diphenyl-4-isopropyl-3-(1'-oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one 23a. Using method I with the title compound ($0.192 \mathrm{~g}, 0.45 \mathrm{mmol}$, dr $96.5: 3.5$) gave (S) -5,5-diphenyl-4-isopropyl-1,3-oxazolidin-2-one 16a as a white solid ($0.0371 \mathrm{~g}, 0.132 \mathrm{mmol}, 95 \%$), mp $247-250^{\circ} \mathrm{C}(\mathrm{EtOH}-$ $\mathrm{H}_{2} \mathrm{O}$) (lit. ${ }^{13}$ 253.2-253.9 ${ }^{\circ} \mathrm{C}$) (Found: C, 76.44; H, 6.90; N, 4.83. Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $76.84 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.98 \%$). Also isolated as a colourless oil was (S)-2-methyl-3-phenylpropionic acid $28(0.069 \mathrm{~g}, 0.423 \mathrm{mmol}, 94 \%) ;[a]_{\mathrm{D}}+24.1(c=0.55$, CHCl_{3}), 89% ee.
Hydrolysis of (2"S,4S)-5,5-di(2'-naphthyl)-4-isopropyl-3-(1'-oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one 23b. Using method I with the title compound $(0.200 \mathrm{~g}, 0.379 \mathrm{mmol}$, dr 91 : 9) gave (S)-5,5-di(2'-naphthyl)-4-isopropyl-1,3-oxazolidin-2-one $\mathbf{1 6 b}$ as a white solid ($0.1463 \mathrm{~g}, 0.379 \mathrm{mmol}, 100 \%$), mp $240-242{ }^{\circ} \mathrm{C}$ (Found: C, 81.41 ; H, 6.26; N, 3.54. Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 81.86 ; \mathrm{H}, 6.08 ; \mathrm{N}, 3.67 \%$). Also isolated as a colourless oil was (S)-2-methyl-3-propionic acid $28(0.0449 \mathrm{~g}$, $0.273 \mathrm{mmol}, 72 \%) ;[a]_{\mathrm{D}}+21.7\left(c=0.74, \mathrm{CHCl}_{3}\right), 81 \%$ ee.
Hydrolysis of ($\left.2^{\prime \prime} \mathrm{S}, 4 \mathrm{~S}\right)$-5,5-di(4'-tolyl)-4-isopropyl-3-($1^{\prime}-$ oxo-2'-benzylpropyl)-1,3-oxazolidin-2-one 23c. Using method I with the title compound $(0.1916 \mathrm{~g}, 0.421 \mathrm{mmol}, \mathrm{dr} 97: 3)$ gave (S)-5,5-di(4'-tolyl)-4-isopropyl-1,3-oxazolidin-2-one 16c as a white solid ($0.130 \mathrm{~g}, 0.42 \mathrm{mmol}, 100 \%$), mp 181-188 ${ }^{\circ} \mathrm{C}$. Also isolated as a colourless oil was (S)-2-methyl-3-propionic acid $28(0.0434 \mathrm{~g}, 0.265 \mathrm{mmol}, 63 \%) ;[a]_{\mathrm{D}}+24.9\left(c=0.51, \mathrm{CHCl}_{3}\right)$, 92% ee.

Acknowledgements

We are grateful to Hickson \& Welch for a fully funded studentship (to KA). We also thank Dr Sheetal Handa (BP Chemicals) and Dr Terry Lowdon (Hickson \& Welch) for valuable discussions and to Professor Kyuji Ohta (Strathclyde University) for translation of ref. 13. We are indebted to the EPSRC National Mass Spectrometry Service, Swansea for running some mass spectra.

References

1 G. Procter, Asymmetric Synthesis, OUP, Oxford, 1996; R. E. Gawley and J. Aubé, Principles of Organic Synthesis, Pergamon Press, Oxford, 1996.
2 For reviews of the use of 1,3-oxazolidin-2-ones as chiral auxiliaries see: D. J. Ager, J. Prakash and D. R. Schaad, Aldrichimica Acta, 1997, 30, 3; D. J. Ager, J. Prakash and D. R. Schaad, Chem. Rev., 1996, 96, 835; D. A. Evans, Aldrichimica Acta, 1982, 15, 23.
3 M. R. Banks, A. J. Blake, J. I. G. Cadogan, I. M. Dawson, I. Gosney, K. J. Grant, S. Gaur, P. K. Hodgson, K. S. Knight, G. W. Smith and D. E. Stevenson, Tetrahedron, 1992, 48, 7979; K. Tanaka, H. Uno, H. Osuga and H. Suzuki, Tetrahedron: Asymmetry, 1993, 4, 629; M. R. Banks, J. I. G. Cadogan, I. Gosney, K. J. Grant, S. Gaur, P. K. Hodgson and P. Thorburn, Heterocycles, 1994, 37, 199; M. R. Banks, A. J. Blake, A. R. Brown, J. I. G. Cadogan, S. Gaur,
I. Gosney, P. K. Hodgson and P. Thorburn, Tetrahedron Lett., 1994, 35, 489.
4 (a) M. R. Banks, A. J. Blake, J. I. G. Cadogan, I. M. Dawson, S. Gaur, I. Gosney, R. O. Gould, K. J. Grant and P. K. Hodgson, J. Chem. Soc., Chem. Commun., 1993, 1147; (b) M. R. Banks, J. I. G. Cadogan, I. Gosney, S. Gaur and P. K. Hodgson, Tetrahedron: Asymmetry, 1994, 5, 2447; (c) K. Rück and H. Kunz, Synthesis, 1993, 1018; (d) P. Köll and A. Lützen, Tetrahedron: Asymmetry 1995, 6, 43; (e) P. Köll and A. Lützen, Tetrahedron: Asymmetry, 1996, 7, 637; (f) K. Rück-Braun, A. Stamm, S. Engel and H. Kunz, J. Org. Chem., 1997, 62, 967; (g) A. Lützen and P. Köll, Tetrahedron. Asymmetry, 1997, 8, 29; (h) A. Lützen and P. Köll, Tetrahedron: Asymmetry, 1997, 8, 1193; (i) M. Lützen, A. Lützen and P. Köll, Tetrahedron: Asymmetry, 2000, 11, 371; (j) R. Saul, J. Kopf and P. Köll, Tetrahedron: Asymmetry, 2000, 11, 423.

5 K. Kimura, K. Murata, K. Otsuka, T. Ishizuka, H. Haratake and T. Kunieda, Tetrahedron Lett., 1992, 33, 4461.

6 A. K. Ghosh, T. T. Dicong and S. P. McKee, J. Chem. Soc., Chem Commun., 1992, 1673; A. Sudo and K. Saigo, Tetrahedron: Asymmetry, 1995, 6, 2153
7 M. P. Sibi, P. K. Deshpande and J. Ji, Tetrahedron Lett., 1995, 36, 8965.

8 (a) S. M. Allin and S. J. Shuttleworth, Tetrahedron Lett., 1996, 37, 8023; (b) K. Burgess and D. Lim, Chem. Commun., 1997, 785; (c) C. W. Phoon and C. Abell, Tetrahedron Lett., 1998, 39, 2655; (d) J. D. Winkler and W. McCoull, Tetrahedron Lett., 1998, 39, 4935; (e) S. P. Bew, S. D. Bull and S. G. Davies, Tetrahedron Lett., 2000, 41, 7577.

9 D. A. Evans, T. C. Britton and J. A. Ellman, Tetrahedron Lett., 1987, 28, 6141.
10 (a) S. G. Davies and H. J. Sanganee, Tetrahedron: Asymmetry, 1995, 6, 671; (b) S. D. Bull, S. G. Davies, S. Jones, M. E. C. Polywka, R. S. Prasad and H. J. Sanganee, Synlett, 1998, 519; (c) S. G. Davies, H. J. Sanganee and P. Szolcsanyi, Tetrahedron, 1999, 55, 3337 (d) S. D. Bull, S. G. Davies, R. L. Nicholson, H. J. Sanganee and A. D. Smith, Tetrahedron: Asymmetry, 2000, 11, 3475; (e) S. D. Bull, S. G. Davies, M.-S. Key, R. L. Nicholson and E. D. Savory, Chem. Commun., 2000, 1721; (f) H. Yamamoto, S. Watanabe,
K. Kadotani, M. Hasegawa, M. Noguchi and S. Kanemasa, Tetrahedron Lett., 2000, 41, 3131.
11 C. Cardillo, L. Gentilucci, C. Tomasini and L. Tomasoni, Tetrahedron: Asymmetry, 1995, 6, 1947; C. Cardillo, E. Di Martino, L. Gentilucci, C. Tomasini and L. Tomasoni, Tetrahedron: Asymmetry, 1995, 6, 1957.
12 C. L. Gibson, K. Gillon and S. Cook, Tetrahedron Lett., 1998, 39, 6733.

13 T. Isobe, K. Fukuda, Japanese Patent JP09143173, 1995; Chem. Abstr., 1997, 127, 50635.
14 The 1,3-oxazolidin-2-one 16a has previously been prepared by others but not utilized as an auxiliary: (a) P. Delair, C. Einhorn and J. Luche, J. Org. Chem., 1994, 59, 680; (b) R. E. Gawley and P. Zhang, J. Org. Chem., 1996, 61, 8103.

15 T. Hintermann and D. Seebach, Helv. Chim. Acta, 1998, 81, 2093.
16 M. Brenner and D. Seebach, Helv. Chim. Acta, 1999, 82, 2365; C. Gaul and D. Seebach, Org. Lett., 2000, 2, 1501; S.-i. Fukuzawa, H. Matsuzawa and S.-i. Yoshimitsu, J. Org. Chem., 2000, 65, 1702.

17 S. D. Bull, S. G. Davies, S. Jones and H. J. Sanganee, J. Chem. Soc., Perkin Trans. 1, 1999, 387.
18 D. Sicker, Synthesis, 1989, 875.
19 D. A. Evans, H. Bartroli and T. L. Shi, J. Am. Chem. Soc., 1981, 103, 2128; J. R. Gage and D. A. Evans, Org. Synth., 1990, 68, 83.
20 D. J Ager, D. R Allen and D. R. Schaad, Synthesis, 1996, 1283
21 K. Gillon Ph.D. Thesis, University of Strathclyde, September 1998.
22 D. A. Evans, M. D. Ennis and D. J. Mathre, J. Am. Chem. Soc., 1982, 104, 1737.
23 D. A. Evans, T. C. Britton, J. A. Ellman and R. L. Dorrow, J. Am. Chem. Soc., 1990, 112, 4011.
24 R. E. Harmon, G. Wellman and S. K. Gupta, J. Org. Chem., 1973, 38, 11 .
25 A. J. Papa, J. Org. Chem., 1966, 31, 1426.
26 D. Parker and R. Fulwood, Tetrahedron: Asymmetry, 1992, 3, 25.
27 D. L. Delinck and A. L. Margolin, Tetrahedron Lett., 1990, 31, 6797.
28 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
29 The values were compared to those reported in the Fluka Catalogue, Sigma-Aldrich, Gillingham, Dorset, 1999.
30 S. Itsuno and K. Ito, J. Org. Chem., 1984, 49, 555.

[^0]: \dagger Address correspondence regarding the X-ray crystallography to this

[^1]: $\ddagger X$-Ray crystallographic data: $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3}, \quad M=427.52$, monoclinic, $a=10.765(4), \quad b=9.013(4), \quad c=12.835(5) \quad \AA, \quad \beta=111.43(3)^{\circ}, \quad U=$ 1159.3(8) $\AA^{3}, T=123 \mathrm{~K}$, space group $P 2_{1}, Z=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.079$ mm^{-1}, 5803 measured reflections, 4556 unique $\left(R_{\text {int }}=0.0406\right)$, $2 \theta_{\text {max }}=52^{\circ}$. Final refinement to convergence using SHELXL97 on F^{2} gave $R_{1}=0.0635$ for 2954 observed reflections with $I>2 \sigma(I)$ and $\mathrm{w} R_{2}=0.1890$ for all reflections. All non-hydrogen atoms were treated anisotropically and all hydrogen atoms were placed in calculated positions and in a riding mode. As the diffraction data on their own give no reliable information on the absolute structure, this was based on the known stereochemistry at C3. CCDC reference number 159626. See http://www.rsc.org/suppdata/p1/b1/b102020j/ for crystallographic files in .cif or other electronic format.

[^2]: \S The IUPAC name for trisyl is 2,4,6-triisopropylsulfonyl.

 - The IUPAC name for triflate is trifluoromethanesulfonate

